Optimal Tampering Attack Strategy for FIR System Identification With Multi-Level Quantized Observations

IF 3.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Wenke Liu, Fengwei Jing, Yinghui Wang, Jin Guo
{"title":"Optimal Tampering Attack Strategy for FIR System Identification With Multi-Level Quantized Observations","authors":"Wenke Liu,&nbsp;Fengwei Jing,&nbsp;Yinghui Wang,&nbsp;Jin Guo","doi":"10.1002/rnc.7729","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper considers the optimal tampering attack strategy in system identification of Finite Impulse Response (FIR) systems with multi-level quantized observations under data tampering attacks. First, the data tampering attack model based on a multi-level quantization system is established in a conditional probability manner according to the features of the quantization system. Second, a multi-parameter-based system parameter estimation algorithm is designed and its convergence consistency is proved. Then, according to the convergence of the designed identification algorithm under a tampering attack, the infinite paradigm of the difference between the converged value and the actual parameter after the attack is used as the attack index, and the optimal tampering attack strategy is designed to destroy the consistency of the recognition algorithm so as to make the best attack effect achieved. Finally, numerical simulation experiments under different conditions are used to verify the result.</p>\n </div>","PeriodicalId":50291,"journal":{"name":"International Journal of Robust and Nonlinear Control","volume":"35 4","pages":"1437-1448"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robust and Nonlinear Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rnc.7729","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the optimal tampering attack strategy in system identification of Finite Impulse Response (FIR) systems with multi-level quantized observations under data tampering attacks. First, the data tampering attack model based on a multi-level quantization system is established in a conditional probability manner according to the features of the quantization system. Second, a multi-parameter-based system parameter estimation algorithm is designed and its convergence consistency is proved. Then, according to the convergence of the designed identification algorithm under a tampering attack, the infinite paradigm of the difference between the converged value and the actual parameter after the attack is used as the attack index, and the optimal tampering attack strategy is designed to destroy the consistency of the recognition algorithm so as to make the best attack effect achieved. Finally, numerical simulation experiments under different conditions are used to verify the result.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Robust and Nonlinear Control
International Journal of Robust and Nonlinear Control 工程技术-工程:电子与电气
CiteScore
6.70
自引率
20.50%
发文量
505
审稿时长
2.7 months
期刊介绍: Papers that do not include an element of robust or nonlinear control and estimation theory will not be considered by the journal, and all papers will be expected to include significant novel content. The focus of the journal is on model based control design approaches rather than heuristic or rule based methods. Papers on neural networks will have to be of exceptional novelty to be considered for the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信