Alison J. King, Julian D. Olden, Osmar J. Luiz, Mark J. Kennard, Brendan Adair, David A. Crook, Michael M. Douglas, Thor M. Saunders, Dion Wedd
{"title":"Influence of hydrological variability and life history strategy on riverine fish assemblages in the Australian wet-dry tropics","authors":"Alison J. King, Julian D. Olden, Osmar J. Luiz, Mark J. Kennard, Brendan Adair, David A. Crook, Michael M. Douglas, Thor M. Saunders, Dion Wedd","doi":"10.1111/eff.12809","DOIUrl":null,"url":null,"abstract":"<p>Riverine fish assemblages are strongly influenced by attributes of the flow regime. Tropical savannah river systems have distinct and predictable hydrologic seasonality, reflecting the wet-dry climate, but can vary substantially in terms of dry season flow permanency and wet season flow-pulse characteristics. Understanding how flow permanence and variability influence fish assemblages, and whether these factors can be used to predict responses to future hydrological change, are key knowledge gaps that impede effective management. We examined the influence of hydrological variability on the structure and diversity of freshwater fish assemblages across rivers of the wet-dry tropics of northern Australia. We found distinct fish assemblages that varied predictably across three hydrological river types: Intermittent, Perennial Stable and Perennial Flashy flow regimes. This distinction emerged despite a common species pool across the region. Species richness was greatest in rivers with Perennial Stable flow regimes, whereas beta-diversity was greatest in Intermittent rivers. However, life history strategies of constituent species were generally poor predictors of species abundances within each hydrological river type. The distinct fish assemblages evident among hydrological classes may provide some cautious ability to both predict potential fish assemblage changes with future hydrological changes (e.g. if perennial streams became more flashy or intermittent), and to predict fish assemblages expected in unsampled rivers with particular hydrological characteristics. Our findings provide further support for the importance of maintaining regional flow-habitat heterogeneity and the connectivity between hydrological river types, and their essential role for conserving tropical fish species diversity into an uncertain hydrological future.</p>","PeriodicalId":11422,"journal":{"name":"Ecology of Freshwater Fish","volume":"34 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eff.12809","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology of Freshwater Fish","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eff.12809","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Riverine fish assemblages are strongly influenced by attributes of the flow regime. Tropical savannah river systems have distinct and predictable hydrologic seasonality, reflecting the wet-dry climate, but can vary substantially in terms of dry season flow permanency and wet season flow-pulse characteristics. Understanding how flow permanence and variability influence fish assemblages, and whether these factors can be used to predict responses to future hydrological change, are key knowledge gaps that impede effective management. We examined the influence of hydrological variability on the structure and diversity of freshwater fish assemblages across rivers of the wet-dry tropics of northern Australia. We found distinct fish assemblages that varied predictably across three hydrological river types: Intermittent, Perennial Stable and Perennial Flashy flow regimes. This distinction emerged despite a common species pool across the region. Species richness was greatest in rivers with Perennial Stable flow regimes, whereas beta-diversity was greatest in Intermittent rivers. However, life history strategies of constituent species were generally poor predictors of species abundances within each hydrological river type. The distinct fish assemblages evident among hydrological classes may provide some cautious ability to both predict potential fish assemblage changes with future hydrological changes (e.g. if perennial streams became more flashy or intermittent), and to predict fish assemblages expected in unsampled rivers with particular hydrological characteristics. Our findings provide further support for the importance of maintaining regional flow-habitat heterogeneity and the connectivity between hydrological river types, and their essential role for conserving tropical fish species diversity into an uncertain hydrological future.
期刊介绍:
Ecology of Freshwater Fish publishes original contributions on all aspects of fish ecology in freshwater environments, including lakes, reservoirs, rivers, and streams. Manuscripts involving ecologically-oriented studies of behavior, conservation, development, genetics, life history, physiology, and host-parasite interactions are welcomed. Studies involving population ecology and community ecology are also of interest, as are evolutionary approaches including studies of population biology, evolutionary ecology, behavioral ecology, and historical ecology. Papers addressing the life stages of anadromous and catadromous species in estuaries and inshore coastal zones are considered if they contribute to the general understanding of freshwater fish ecology. Theoretical and modeling studies are suitable if they generate testable hypotheses, as are those with implications for fisheries. Manuscripts presenting analyses of published data are considered if they produce novel conclusions or syntheses. The journal publishes articles, fresh perspectives, and reviews and, occasionally, the proceedings of conferences and symposia.