{"title":"Immobilization of arsenic wastes and retardation effect on cement hydration: Experimental and molecular dynamic analysis","authors":"Yuting Chen, Qiang Yuan, Zheyu Zhu, Linglin Xu, Zixuan Sun, Lingli Xue, Kai Wu","doi":"10.1111/jace.20240","DOIUrl":null,"url":null,"abstract":"<p>This work was designed to investigate the influence of arsenic dosage, variety on the mechanical properties, hydration, and solidification from the perspective of Portland cement (PC) performance evolution. The results demonstrate that using PC could solidify the arsenic wastes effectively, with arsenic leaching concentrations consistently below 5 mg/L. Arsenic wastes retard cement hydration, leading to a slower rate of hydrates formation, disrupting the calcium silicate hydrate (C–S–H) stacking structure, and thus detrimental to strength development especially at early age. The adverse effect is highly dependent on the arsenic variety. The insoluble calcium arsenate exhibits the least impact, while the arsenates show the largest challenging to immobilization due to the instability of hydrates. Molecular dynamic simulation indicates that arsenic can be chemically immobilized with Ca<sup>2+</sup>, and be physically adsorbed onto the positively charged C–S–H by forming As-O···Ca···Si-O units, accompanied by a significant reduction in adsorption energy by 46.5%. The arsenic solidification behavior provides a basis for the resource utilization of arsenic wastes in cementitious materials.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20240","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This work was designed to investigate the influence of arsenic dosage, variety on the mechanical properties, hydration, and solidification from the perspective of Portland cement (PC) performance evolution. The results demonstrate that using PC could solidify the arsenic wastes effectively, with arsenic leaching concentrations consistently below 5 mg/L. Arsenic wastes retard cement hydration, leading to a slower rate of hydrates formation, disrupting the calcium silicate hydrate (C–S–H) stacking structure, and thus detrimental to strength development especially at early age. The adverse effect is highly dependent on the arsenic variety. The insoluble calcium arsenate exhibits the least impact, while the arsenates show the largest challenging to immobilization due to the instability of hydrates. Molecular dynamic simulation indicates that arsenic can be chemically immobilized with Ca2+, and be physically adsorbed onto the positively charged C–S–H by forming As-O···Ca···Si-O units, accompanied by a significant reduction in adsorption energy by 46.5%. The arsenic solidification behavior provides a basis for the resource utilization of arsenic wastes in cementitious materials.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.