Persistence of Reptile DNA in a Terrestrial Substrate: A Case Study Using the Eastern Indigo Snake

Q1 Agricultural and Biological Sciences
Leah R. N. Samuels, Houston C. Chandler, Michelle Hoffman, John A. Kronenberger, Michele Elmore, Robert Aldredge, Benjamin S. Stegenga, James E. Bogan Jr., Mark A. Davis, Stephanie Hertz, Michael K. Schwartz, Taylor Wilcox
{"title":"Persistence of Reptile DNA in a Terrestrial Substrate: A Case Study Using the Eastern Indigo Snake","authors":"Leah R. N. Samuels,&nbsp;Houston C. Chandler,&nbsp;Michelle Hoffman,&nbsp;John A. Kronenberger,&nbsp;Michele Elmore,&nbsp;Robert Aldredge,&nbsp;Benjamin S. Stegenga,&nbsp;James E. Bogan Jr.,&nbsp;Mark A. Davis,&nbsp;Stephanie Hertz,&nbsp;Michael K. Schwartz,&nbsp;Taylor Wilcox","doi":"10.1002/edn3.70053","DOIUrl":null,"url":null,"abstract":"<p>Environmental DNA (eDNA) analysis of terrestrial substrates, such as soil and sand, is a rapid and potentially cost-effective way to monitor rare wildlife species. A promising use-case in the southeastern United States is provided by the eastern indigo snake (<i>Drymarchon couperi</i>), for which accurate monitoring has been challenging due to large home ranges and low-density populations. However, knowledge gaps regarding eDNA deposition and persistence in this system currently limit our ability to apply eDNA sampling effectively at the landscape scale. To overcome some of these gaps, we used an optimized soil and sand eDNA extraction protocol and species-specific qPCR assay to conduct a full factorial experiment of eastern indigo snake DNA detection in sand as a function of the duration of snake presence and time since snake removal. We then used these data and a generalized linear mixed model to predict detection probability. Of the 224 total experimental samples, 68 (30.4%) tested positive for eastern indigo snake eDNA. Our model predicted that, with long periods in the enclosure and sampling soon after snake removal, eastern indigo snake eDNA is detectable 68.7% of the time. Eastern indigo snake DNA was detectable in as little as 100 s of snake presence in the enclosure (Pr = 21.1%) and for as long as 10 days after snake presence (Pr = 27.7%). These results suggest that DNA sampling in terrestrial systems may be an effective tool for increasing the temporal window of rare snake detection and a useful complement to existing sampling methods for eastern indigo snakes.</p>","PeriodicalId":52828,"journal":{"name":"Environmental DNA","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/edn3.70053","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental DNA","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/edn3.70053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Environmental DNA (eDNA) analysis of terrestrial substrates, such as soil and sand, is a rapid and potentially cost-effective way to monitor rare wildlife species. A promising use-case in the southeastern United States is provided by the eastern indigo snake (Drymarchon couperi), for which accurate monitoring has been challenging due to large home ranges and low-density populations. However, knowledge gaps regarding eDNA deposition and persistence in this system currently limit our ability to apply eDNA sampling effectively at the landscape scale. To overcome some of these gaps, we used an optimized soil and sand eDNA extraction protocol and species-specific qPCR assay to conduct a full factorial experiment of eastern indigo snake DNA detection in sand as a function of the duration of snake presence and time since snake removal. We then used these data and a generalized linear mixed model to predict detection probability. Of the 224 total experimental samples, 68 (30.4%) tested positive for eastern indigo snake eDNA. Our model predicted that, with long periods in the enclosure and sampling soon after snake removal, eastern indigo snake eDNA is detectable 68.7% of the time. Eastern indigo snake DNA was detectable in as little as 100 s of snake presence in the enclosure (Pr = 21.1%) and for as long as 10 days after snake presence (Pr = 27.7%). These results suggest that DNA sampling in terrestrial systems may be an effective tool for increasing the temporal window of rare snake detection and a useful complement to existing sampling methods for eastern indigo snakes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental DNA
Environmental DNA Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
11.00
自引率
0.00%
发文量
99
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信