On the size-dependent vibrations of doubly curved porous shear deformable FGM microshells

IF 3.4 Q1 ENGINEERING, MECHANICAL
Behrouz Karami, Mergen H. Ghayesh, Shahid Hussain, Marco Amabili
{"title":"On the size-dependent vibrations of doubly curved porous shear deformable FGM microshells","authors":"Behrouz Karami,&nbsp;Mergen H. Ghayesh,&nbsp;Shahid Hussain,&nbsp;Marco Amabili","doi":"10.1002/msd2.12137","DOIUrl":null,"url":null,"abstract":"<p>This paper aims to analyse the free vibrations of doubly curved imperfect shear deformable functionally graded material microshells using a five-parameter shear deformable model. Porosity is modeled via the modified power-law rule by a logarithmic-uneven variation along the thickness. Coupled axial, transverse, and rotational motion equations for general doubly curved microsystems are obtained by a virtual work/energy of Hamilton's principle using a modified first-order shear deformable theory including small size dependence. The modal decomposition method is then used to obtain a solution for different geometries of microshells: spherical, elliptical, hyperbolic, and cylindrical. A detailed study on the influence of material gradation and porosity, small-length scale coefficient, and geometrical parameters on the frequency characteristics of the microsystem is conducted for different shell geometries.</p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"4 4","pages":"387-405"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.12137","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"国际机械系统动力学学报(英文)","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/msd2.12137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to analyse the free vibrations of doubly curved imperfect shear deformable functionally graded material microshells using a five-parameter shear deformable model. Porosity is modeled via the modified power-law rule by a logarithmic-uneven variation along the thickness. Coupled axial, transverse, and rotational motion equations for general doubly curved microsystems are obtained by a virtual work/energy of Hamilton's principle using a modified first-order shear deformable theory including small size dependence. The modal decomposition method is then used to obtain a solution for different geometries of microshells: spherical, elliptical, hyperbolic, and cylindrical. A detailed study on the influence of material gradation and porosity, small-length scale coefficient, and geometrical parameters on the frequency characteristics of the microsystem is conducted for different shell geometries.

Abstract Image

双弯曲多孔剪切变形FGM微壳尺寸相关振动研究
本文采用五参数剪切变形模型分析了双弯曲不完全剪切变形功能梯度材料微壳的自由振动。孔隙度是通过修正的幂律规则,通过沿厚度的对数不均匀变化来建模的。利用含小尺寸依赖性的修正一阶剪切变形理论,利用Hamilton原理的虚功/能,得到了一般双弯曲微系统的轴向、横向和旋转耦合运动方程。然后利用模态分解方法得到不同几何形状微壳的解:球形、椭圆形、双曲型和圆柱形。针对不同的壳体几何形状,详细研究了材料级配与孔隙度、小长度尺度系数、几何参数对微系统频率特性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信