Dynamic environment UAV deployment algorithm based on potential game theory

IF 1.5 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Chuan Gu, Binbin Wu, Daoxing Guo, Hao Jiang
{"title":"Dynamic environment UAV deployment algorithm based on potential game theory","authors":"Chuan Gu,&nbsp;Binbin Wu,&nbsp;Daoxing Guo,&nbsp;Hao Jiang","doi":"10.1049/cmu2.12776","DOIUrl":null,"url":null,"abstract":"<p>To address the issue of low coverage resulting from the challenge of acquiring the optimal deployment position in commonly used distributed deployment algorithms, this study presents a three-dimensional deployment algorithm for Unmanned Aerial Vehicles (UAVs) based on potential games. First, a local mutually beneficial game model is designed to demonstrate the existence of exact potential games and Nash equilibrium. The Nash equilibrium solution corresponds to the maximum coverage. Next, drawing inspiration from exploration, a solution method called Exploration Spatial Adaptive Play is proposed. It utilizes the maximum utility function value from multiple step sizes in the exploration direction to update the action selection probability, thereby ensuring the optimal deployment position in each decision cycle. To address the issue of sensor position error, a method for processing sensor position errors is proposed. The simulation results demonstrate that the proposed distributed deployment algorithm achieves higher coverage compared to commonly used methods.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12776","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12776","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To address the issue of low coverage resulting from the challenge of acquiring the optimal deployment position in commonly used distributed deployment algorithms, this study presents a three-dimensional deployment algorithm for Unmanned Aerial Vehicles (UAVs) based on potential games. First, a local mutually beneficial game model is designed to demonstrate the existence of exact potential games and Nash equilibrium. The Nash equilibrium solution corresponds to the maximum coverage. Next, drawing inspiration from exploration, a solution method called Exploration Spatial Adaptive Play is proposed. It utilizes the maximum utility function value from multiple step sizes in the exploration direction to update the action selection probability, thereby ensuring the optimal deployment position in each decision cycle. To address the issue of sensor position error, a method for processing sensor position errors is proposed. The simulation results demonstrate that the proposed distributed deployment algorithm achieves higher coverage compared to commonly used methods.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Communications
IET Communications 工程技术-工程:电子与电气
CiteScore
4.30
自引率
6.20%
发文量
220
审稿时长
5.9 months
期刊介绍: IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth. Topics include, but are not limited to: Coding and Communication Theory; Modulation and Signal Design; Wired, Wireless and Optical Communication; Communication System Special Issues. Current Call for Papers: Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信