Predictive handover mechanism for seamless mobility in 5G and beyond networks

IF 1.5 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Thafer H. Sulaiman, Hamed S. Al-Raweshidy
{"title":"Predictive handover mechanism for seamless mobility in 5G and beyond networks","authors":"Thafer H. Sulaiman,&nbsp;Hamed S. Al-Raweshidy","doi":"10.1049/cmu2.12878","DOIUrl":null,"url":null,"abstract":"<p>Scalability is one of the important parameters for mobile communication networks of the present generation and further to the future 5G and beyond networks. When a user is in motion transferring from one cell site to another, then the handover procedure becomes important in the sense that it ensures that a user gets consistent connection without interruption. Nevertheless, the classic handover process in cellular networks has some sort of drawback like causing service interruptions, affecting packet transmission, and increased latency which is highly uncongenial to the evolving applications which have stringent requirement to latency. To overcome these challenges and improve the mobile handover in 5G and future mobile networks, this article puts forth a predictive handover mechanism using reinforcement learning algorithm. The RL algorithm outperforms the ML algorithm in several aspects. Compared to ML, RL has a higher handover success rate (∼95% vs. ∼90%), lower latency (∼30 ms vs. ∼40 ms), reduced failure rate (∼5% vs. ∼10%), and shorter disconnection time (∼50 ms vs. ∼70 ms). This demonstrates the RL algorithm's superior ability to adapt to dynamic network conditions.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12878","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12878","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Scalability is one of the important parameters for mobile communication networks of the present generation and further to the future 5G and beyond networks. When a user is in motion transferring from one cell site to another, then the handover procedure becomes important in the sense that it ensures that a user gets consistent connection without interruption. Nevertheless, the classic handover process in cellular networks has some sort of drawback like causing service interruptions, affecting packet transmission, and increased latency which is highly uncongenial to the evolving applications which have stringent requirement to latency. To overcome these challenges and improve the mobile handover in 5G and future mobile networks, this article puts forth a predictive handover mechanism using reinforcement learning algorithm. The RL algorithm outperforms the ML algorithm in several aspects. Compared to ML, RL has a higher handover success rate (∼95% vs. ∼90%), lower latency (∼30 ms vs. ∼40 ms), reduced failure rate (∼5% vs. ∼10%), and shorter disconnection time (∼50 ms vs. ∼70 ms). This demonstrates the RL algorithm's superior ability to adapt to dynamic network conditions.

Abstract Image

预测切换机制,实现5G及以后网络的无缝移动
可扩展性是当前一代移动通信网络以及未来5G及以后网络的重要参数之一。当用户在移动中从一个小区站点转移到另一个小区站点时,切换过程变得非常重要,因为它确保用户在不中断的情况下获得一致的连接。然而,蜂窝网络中的经典切换过程存在一些缺点,如导致业务中断、影响分组传输、增加延迟,这与对延迟有严格要求的不断发展的应用非常不适应。为了克服这些挑战,改善5G及未来移动网络中的移动切换,本文提出了一种基于强化学习算法的预测切换机制。RL算法在几个方面优于ML算法。与ML相比,RL具有更高的切换成功率(~ 95% vs ~ 90%)、更低的延迟(~ 30 ms vs ~ 40 ms)、更低的故障率(~ 5% vs. ~ 10%)和更短的断开时间(~ 50 ms vs. ~ 70 ms)。这表明RL算法具有较强的适应动态网络条件的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Communications
IET Communications 工程技术-工程:电子与电气
CiteScore
4.30
自引率
6.20%
发文量
220
审稿时长
5.9 months
期刊介绍: IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth. Topics include, but are not limited to: Coding and Communication Theory; Modulation and Signal Design; Wired, Wireless and Optical Communication; Communication System Special Issues. Current Call for Papers: Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信