Enhancement of first carbon hit rate in converter steelmaking through integrated learning-based data cleansing

IF 2.5 Q2 ENGINEERING, INDUSTRIAL
Lingyun Yang, Qianchuan Zhao, Tan Li, Mu Gu, Kaiwu Yang, Weining Song
{"title":"Enhancement of first carbon hit rate in converter steelmaking through integrated learning-based data cleansing","authors":"Lingyun Yang,&nbsp;Qianchuan Zhao,&nbsp;Tan Li,&nbsp;Mu Gu,&nbsp;Kaiwu Yang,&nbsp;Weining Song","doi":"10.1049/cim2.70016","DOIUrl":null,"url":null,"abstract":"<p>First carbon hit rate (FCHR) is an essential indicator of steel converter smelting, reflecting the proportion of steel tapping completed without additional oxygen blowing. However, significant data loss has occurred due to equipment ageing and worker operations, resulting in difficulties in analysing the FCHR. This paper uses mechanism analysis and feature screening to determine the model input, predicts and fills in abnormal data through ensemble learning, and then optimises it through data transformation. Finally, the Stacking model predicts the FCHR, with a training accuracy of up to 94.5% and a test set accuracy of 90.5%. In addition, the authors also conducted a predictive study on oxygen consumption, and the hit rate performed well under different error thresholds, with a maximum of 97.9%. These results provide powerful decision support for steel production and effectively overcome the challenges of data missingness.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"7 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.70016","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cim2.70016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

First carbon hit rate (FCHR) is an essential indicator of steel converter smelting, reflecting the proportion of steel tapping completed without additional oxygen blowing. However, significant data loss has occurred due to equipment ageing and worker operations, resulting in difficulties in analysing the FCHR. This paper uses mechanism analysis and feature screening to determine the model input, predicts and fills in abnormal data through ensemble learning, and then optimises it through data transformation. Finally, the Stacking model predicts the FCHR, with a training accuracy of up to 94.5% and a test set accuracy of 90.5%. In addition, the authors also conducted a predictive study on oxygen consumption, and the hit rate performed well under different error thresholds, with a maximum of 97.9%. These results provide powerful decision support for steel production and effectively overcome the challenges of data missingness.

Abstract Image

通过基于学习的综合数据清洗提高转炉炼钢的首碳命中率
一次碳命中率(FCHR)是炼钢转炉冶炼的重要指标,反映了在没有额外吹氧的情况下完成出钢的比例。然而,由于设备老化和工人操作,已经发生了重大数据丢失,导致分析FCHR的困难。本文通过机理分析和特征筛选确定模型输入,通过集成学习对异常数据进行预测和填充,然后通过数据转换进行优化。最后,利用堆叠模型对FCHR进行预测,训练准确率达到94.5%,测试集准确率达到90.5%。此外,作者还对耗氧量进行了预测研究,命中率在不同的错误阈值下表现良好,最高可达97.9%。这些结果为钢铁生产提供了强有力的决策支持,有效克服了数据缺失的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Collaborative Intelligent Manufacturing
IET Collaborative Intelligent Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
9.10
自引率
2.40%
发文量
25
审稿时长
20 weeks
期刊介绍: IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly. The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信