{"title":"Novel View Synthesis Based on Similar Perspective","authors":"Wenkang Huang","doi":"10.1002/cav.70006","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Neural radiance fields (NeRF) technology has garnered significant attention due to its exceptional performance in generating high-quality novel view images. In this study, we propose an innovative method that leverages the similarity between views to enhance the quality of novel view image generation. Initially, a pre-trained NeRF model generates an initial novel view image, which is subsequently compared and subjected to feature transfer with the most similar reference view from the training dataset. Following this, the reference view that is most similar to the initial novel view is selected from the training dataset. We designed a texture transfer module that employs a strategy progressing from coarse-to-fine, effectively integrating salient features from the reference view into the initial image, thus producing more realistic novel view images. By using similar views, this approach not only improves the quality of novel perspective images but also incorporates the training dataset as a dynamic information pool into the novel view integration process. This allows for the continuous acquisition and utilization of useful information from the training data throughout the synthesis process. Extensive experimental validation shows that using similar views to provide scene information significantly outperforms existing neural rendering techniques in enhancing the realism and accuracy of novel view images.</p>\n </div>","PeriodicalId":50645,"journal":{"name":"Computer Animation and Virtual Worlds","volume":"36 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Animation and Virtual Worlds","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cav.70006","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Neural radiance fields (NeRF) technology has garnered significant attention due to its exceptional performance in generating high-quality novel view images. In this study, we propose an innovative method that leverages the similarity between views to enhance the quality of novel view image generation. Initially, a pre-trained NeRF model generates an initial novel view image, which is subsequently compared and subjected to feature transfer with the most similar reference view from the training dataset. Following this, the reference view that is most similar to the initial novel view is selected from the training dataset. We designed a texture transfer module that employs a strategy progressing from coarse-to-fine, effectively integrating salient features from the reference view into the initial image, thus producing more realistic novel view images. By using similar views, this approach not only improves the quality of novel perspective images but also incorporates the training dataset as a dynamic information pool into the novel view integration process. This allows for the continuous acquisition and utilization of useful information from the training data throughout the synthesis process. Extensive experimental validation shows that using similar views to provide scene information significantly outperforms existing neural rendering techniques in enhancing the realism and accuracy of novel view images.
期刊介绍:
With the advent of very powerful PCs and high-end graphics cards, there has been an incredible development in Virtual Worlds, real-time computer animation and simulation, games. But at the same time, new and cheaper Virtual Reality devices have appeared allowing an interaction with these real-time Virtual Worlds and even with real worlds through Augmented Reality. Three-dimensional characters, especially Virtual Humans are now of an exceptional quality, which allows to use them in the movie industry. But this is only a beginning, as with the development of Artificial Intelligence and Agent technology, these characters will become more and more autonomous and even intelligent. They will inhabit the Virtual Worlds in a Virtual Life together with animals and plants.