Programmable optical window bonding enabled 3D printing of high-resolution transparent microfluidic devices for biomedical applications

Droplet Pub Date : 2025-01-06 DOI:10.1002/dro2.153
Mengguang Ye, Yuxiang Xue, Hongyu Zhao, Patricia Hazelton, Yuxuan Ji, Glen McHale, Xianfeng Chen
{"title":"Programmable optical window bonding enabled 3D printing of high-resolution transparent microfluidic devices for biomedical applications","authors":"Mengguang Ye,&nbsp;Yuxiang Xue,&nbsp;Hongyu Zhao,&nbsp;Patricia Hazelton,&nbsp;Yuxuan Ji,&nbsp;Glen McHale,&nbsp;Xianfeng Chen","doi":"10.1002/dro2.153","DOIUrl":null,"url":null,"abstract":"<p>Traditional technologies for manufacturing microfluidic devices often involve the use of molds for polydimethylsiloxane (PDMS) casting generated from photolithography techniques, which are time-consuming, costly, and difficult to use in generating multilayered structure. As an alternative, 3D printing allows rapid and cost-effective prototyping and customization of complex microfluidic structures. However, 3D-printed devices are typically opaque and are challenging to create small channels. Herein, we introduce a novel “programmable optical window bonding” 3D printing method that incorporates the bonding of an optical window during the printing process, facilitating the fabrication of transparent microfluidic devices with high printing fidelity. Our approach allows direct and rapid manufacturing of complex microfluidic structure without the use of molds for PDMS casting. We successfully demonstrated the applications of this method by fabricating a variety of microfluidic devices, including perfusable chips for cell culture, droplet generators for spheroid formation, and high-resolution droplet microfluidic devices involving different channel width and height for rapid antibiotic susceptibility testing. Overall, our 3D printing method demonstrates a rapid and cost-effective approach for manufacturing microfluidic devices, particularly in the biomedical field, where rapid prototyping and high-quality optical analysis are crucial.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.153","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Droplet","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dro2.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional technologies for manufacturing microfluidic devices often involve the use of molds for polydimethylsiloxane (PDMS) casting generated from photolithography techniques, which are time-consuming, costly, and difficult to use in generating multilayered structure. As an alternative, 3D printing allows rapid and cost-effective prototyping and customization of complex microfluidic structures. However, 3D-printed devices are typically opaque and are challenging to create small channels. Herein, we introduce a novel “programmable optical window bonding” 3D printing method that incorporates the bonding of an optical window during the printing process, facilitating the fabrication of transparent microfluidic devices with high printing fidelity. Our approach allows direct and rapid manufacturing of complex microfluidic structure without the use of molds for PDMS casting. We successfully demonstrated the applications of this method by fabricating a variety of microfluidic devices, including perfusable chips for cell culture, droplet generators for spheroid formation, and high-resolution droplet microfluidic devices involving different channel width and height for rapid antibiotic susceptibility testing. Overall, our 3D printing method demonstrates a rapid and cost-effective approach for manufacturing microfluidic devices, particularly in the biomedical field, where rapid prototyping and high-quality optical analysis are crucial.

Abstract Image

可编程光学窗口键合实现了用于生物医学应用的高分辨率透明微流体装置的3D打印
传统的微流控器件制造技术通常涉及使用由光刻技术产生的聚二甲基硅氧烷(PDMS)铸件的模具,这种技术耗时,成本高,并且难以用于生成多层结构。作为替代方案,3D打印允许快速和具有成本效益的原型和定制复杂的微流体结构。然而,3d打印设备通常是不透明的,并且很难创建小通道。在此,我们介绍了一种新的“可编程光学窗口键合”3D打印方法,该方法在打印过程中结合光学窗口的键合,有助于制作具有高打印保真度的透明微流体器件。我们的方法允许直接和快速制造复杂的微流体结构,而无需使用模具进行PDMS铸造。我们成功地展示了这种方法的应用,通过制造各种微流控装置,包括用于细胞培养的可渗透芯片,用于球体形成的液滴发生器,以及用于快速抗生素敏感性测试的高分辨率液滴微流控装置,包括不同通道宽度和高度。总体而言,我们的3D打印方法展示了一种快速且具有成本效益的制造微流体装置的方法,特别是在生物医学领域,快速原型和高质量光学分析至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信