Economic Forecasting With German Newspaper Articles

IF 3.4 3区 经济学 Q1 ECONOMICS
Tino Berger, Simon Wintter
{"title":"Economic Forecasting With German Newspaper Articles","authors":"Tino Berger,&nbsp;Simon Wintter","doi":"10.1002/for.3211","DOIUrl":null,"url":null,"abstract":"<p>We introduce a new leading indicator for the German business cycle based on the content of newspaper articles from the <i>Süddeutsche Zeitung</i>. We use the rapidly evolving technique of Natural Language Processing (NLP) to transform the content of daily newspaper articles between 1992 and 2021 into topic time series using an LDA model. These topic time series reflect broad areas of the German economy since 1992, in particular the recession phases of the High-Tech Crisis, the Great Financial Crisis and the Covid-19 pandemic. We use the Newspaper Indicator in a Probit model to demonstrate that our data can be considered as a new leading indicator for predicting recession periods in Germany. Moreover, we show in an out-of-sample forecast experiment that our newspaper data have a predictive power for the German business cycle across 12 target variables that is as strong as established survey indicators. Industrial Production, the Stock Market Index DAX, and the Consumer Price Index for Germany can even be predicted out-of-sample more accurately with our newspaper data than with survey indices of the Ifo Institute and the OECD.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"44 2","pages":"497-512"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/for.3211","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3211","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new leading indicator for the German business cycle based on the content of newspaper articles from the Süddeutsche Zeitung. We use the rapidly evolving technique of Natural Language Processing (NLP) to transform the content of daily newspaper articles between 1992 and 2021 into topic time series using an LDA model. These topic time series reflect broad areas of the German economy since 1992, in particular the recession phases of the High-Tech Crisis, the Great Financial Crisis and the Covid-19 pandemic. We use the Newspaper Indicator in a Probit model to demonstrate that our data can be considered as a new leading indicator for predicting recession periods in Germany. Moreover, we show in an out-of-sample forecast experiment that our newspaper data have a predictive power for the German business cycle across 12 target variables that is as strong as established survey indicators. Industrial Production, the Stock Market Index DAX, and the Consumer Price Index for Germany can even be predicted out-of-sample more accurately with our newspaper data than with survey indices of the Ifo Institute and the OECD.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
5.90%
发文量
91
期刊介绍: The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信