Sugar detection using drop evaporation

Droplet Pub Date : 2025-01-05 DOI:10.1002/dro2.150
Yixiao Qu, Zhengyuan Ma, Min Zhang, Xing Huang, Lujia Xuan, Rui Ding, Wenya Liao, Zhiqiang Wu, Yihe Lin, Kami Hu, Zheng Liu, Ruoyang Chen, Hui He
{"title":"Sugar detection using drop evaporation","authors":"Yixiao Qu,&nbsp;Zhengyuan Ma,&nbsp;Min Zhang,&nbsp;Xing Huang,&nbsp;Lujia Xuan,&nbsp;Rui Ding,&nbsp;Wenya Liao,&nbsp;Zhiqiang Wu,&nbsp;Yihe Lin,&nbsp;Kami Hu,&nbsp;Zheng Liu,&nbsp;Ruoyang Chen,&nbsp;Hui He","doi":"10.1002/dro2.150","DOIUrl":null,"url":null,"abstract":"<p>Evaporation deposition of a spilt sugary drop on the supporting surface can attract ants to surround it. People have a long history of using this phenomenon as an implication of sugar in the drop. Unfortunately, it is hard to detect sugar concentration and has to depend exclusively on ants. Here, we show a facile strategy for the eye-naked detection on sugar concentrations in common liquid mixtures, based on their evaporation depositions. Our experiments show that evaporation drops without any sugar form clear ring-like depositions, and the width of the ring area enlarges with the increase in sugar concentration. We demonstrate that the increase in sugar concentration can increase the liquid viscosity and decrease the capillary flow velocity, thus weakening the “coffee ring” effect. Our further experiments indicate that the temperature has insignificant effects on the correlation between sugar concentrations and ring-like depositions, but the substrate wettability impacts on the correlation by promoting the formation of ring-like depositions. Based on the mechanism study, we develop a strategy for detecting sugar concentrations via quantitatively correlating them with the width of the ring area, and demonstrate that it is valid for various liquid mixtures, for example, carbonate beverage, liquid medicine, and plant nutrient. Our findings not only present new insights into the understanding of the sugary drop evaporation, but also provide a facile strategy of detecting sugar concentration that promises great applications in food safety, pharmaceutical detection, and agricultural product measurements.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.150","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Droplet","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dro2.150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Evaporation deposition of a spilt sugary drop on the supporting surface can attract ants to surround it. People have a long history of using this phenomenon as an implication of sugar in the drop. Unfortunately, it is hard to detect sugar concentration and has to depend exclusively on ants. Here, we show a facile strategy for the eye-naked detection on sugar concentrations in common liquid mixtures, based on their evaporation depositions. Our experiments show that evaporation drops without any sugar form clear ring-like depositions, and the width of the ring area enlarges with the increase in sugar concentration. We demonstrate that the increase in sugar concentration can increase the liquid viscosity and decrease the capillary flow velocity, thus weakening the “coffee ring” effect. Our further experiments indicate that the temperature has insignificant effects on the correlation between sugar concentrations and ring-like depositions, but the substrate wettability impacts on the correlation by promoting the formation of ring-like depositions. Based on the mechanism study, we develop a strategy for detecting sugar concentrations via quantitatively correlating them with the width of the ring area, and demonstrate that it is valid for various liquid mixtures, for example, carbonate beverage, liquid medicine, and plant nutrient. Our findings not only present new insights into the understanding of the sugary drop evaporation, but also provide a facile strategy of detecting sugar concentration that promises great applications in food safety, pharmaceutical detection, and agricultural product measurements.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信