Design and preparation of a simplified microdroplet generation device for nanoliter volume collection and measurement with liquid microjunction–surface sampling probe–mass spectrometry

Droplet Pub Date : 2025-01-05 DOI:10.1002/dro2.158
Daniel O. Reddy, Lishen Zhang, Thomas R. Covey, Richard D. Oleschuk
{"title":"Design and preparation of a simplified microdroplet generation device for nanoliter volume collection and measurement with liquid microjunction–surface sampling probe–mass spectrometry","authors":"Daniel O. Reddy,&nbsp;Lishen Zhang,&nbsp;Thomas R. Covey,&nbsp;Richard D. Oleschuk","doi":"10.1002/dro2.158","DOIUrl":null,"url":null,"abstract":"<p>Given recent interest in laboratory automation and miniaturization, the microdroplet research space has expanded across research disciplines and sectors. In turn, the microdroplet field is continually evolving and seeking new methods to generate microdroplets, especially in ways that can be integrated into diverse (microfluidic) workflows. Herein, we present a convenient, low-cost, and re-usable microdroplet generation device, termed as the “NanoWand,” which enables microdroplet formation in the nanoliter volume range through modulated surface energy and roughness, that is, an open surface energy trap (oSET), using commercially available and readily assembled coating and substrate materials. A wand-like shape is excised from a microscope glass cover slip via laser-micromachining and rendered hydrophobic; a circle is then cut-out from the hydrophobically modified wand's tip using laser-micromachining to create the oSET. By adjusting the size of the oSET with laser-micromachining, the volume of the microdroplet can be similarly controlled. Using liquid microjunction–surface sampling probe–mass spectrometry (LMJ-SSP-MS), specific NanoWand droplet capture volumes were estimated to be 117 ± 23.6 nL, 198 ± 30.3 nL, and 277 ± 37.1 nL, corresponding to oSET diameters of 0.75, 1.00, and 1.25 mm, respectively. This simple approach provides a user-friendly way to form and transfer microdroplets that could be integrated into different liquid handling applications, especially when combined with the LMJ-SSP and ambient ionization MS as a powerful and rapid analytical tool.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.158","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Droplet","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dro2.158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given recent interest in laboratory automation and miniaturization, the microdroplet research space has expanded across research disciplines and sectors. In turn, the microdroplet field is continually evolving and seeking new methods to generate microdroplets, especially in ways that can be integrated into diverse (microfluidic) workflows. Herein, we present a convenient, low-cost, and re-usable microdroplet generation device, termed as the “NanoWand,” which enables microdroplet formation in the nanoliter volume range through modulated surface energy and roughness, that is, an open surface energy trap (oSET), using commercially available and readily assembled coating and substrate materials. A wand-like shape is excised from a microscope glass cover slip via laser-micromachining and rendered hydrophobic; a circle is then cut-out from the hydrophobically modified wand's tip using laser-micromachining to create the oSET. By adjusting the size of the oSET with laser-micromachining, the volume of the microdroplet can be similarly controlled. Using liquid microjunction–surface sampling probe–mass spectrometry (LMJ-SSP-MS), specific NanoWand droplet capture volumes were estimated to be 117 ± 23.6 nL, 198 ± 30.3 nL, and 277 ± 37.1 nL, corresponding to oSET diameters of 0.75, 1.00, and 1.25 mm, respectively. This simple approach provides a user-friendly way to form and transfer microdroplets that could be integrated into different liquid handling applications, especially when combined with the LMJ-SSP and ambient ionization MS as a powerful and rapid analytical tool.

Abstract Image

用于液体微结-表面采样探针-质谱法纳升体积采集与测量的简化微液滴生成装置的设计与制备
鉴于最近对实验室自动化和小型化的兴趣,微滴研究空间已经扩展到研究学科和部门。反过来,微液滴领域也在不断发展,并寻求新的方法来产生微液滴,特别是可以集成到各种(微流体)工作流程中的方法。在此,我们提出了一种方便、低成本、可重复使用的微液滴生成装置,称为“NanoWand”,它可以通过调制表面能和粗糙度,即开放表面能阱(oSET),在纳升体积范围内形成微液滴,使用商业上可获得且易于组装的涂层和衬底材料。通过激光微加工从显微镜玻璃盖片上切除棒状形状,并使其疏水;然后使用激光微加工从疏水改性棒的尖端切割出一个圆圈,以创建oSET。通过激光微加工调整oSET的尺寸,微液滴的体积也可以得到类似的控制。利用液体微结-表面采样探针-质谱(LMJ-SSP-MS),估计纳米微滴和液滴的特异性捕获体积分别为117±23.6 nL、198±30.3 nL和277±37.1 nL,对应的oSET直径分别为0.75、1.00和1.25 mm。这种简单的方法提供了一种用户友好的方式来形成和转移微滴,可以集成到不同的液体处理应用中,特别是当与LMJ-SSP和环境电离质谱相结合时,作为一种强大而快速的分析工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信