Paul-Albert Schneide, Michael Sorochan Armstrong, Neal Gallagher, Rasmus Bro
{"title":"Unlocking New Capabilities in the Analysis of GC × GC-TOFMS Data With Shift-Invariant Multi-Linearity","authors":"Paul-Albert Schneide, Michael Sorochan Armstrong, Neal Gallagher, Rasmus Bro","doi":"10.1002/cem.3623","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper introduces a novel deconvolution algorithm, shift-invariant multi-linearity (SIML), which significantly enhances the analysis of data from two-dimensional gas chromatography instruments coupled to a time-of-flight mass spectrometer (GC × GC-TOFMS). Designed to address the challenges posed by retention time shifts and high noise levels, SIML incorporates wavelet-based smoothing and Fourier-transform based shift-correction within the multivariate curve resolution-alternating least squares (MCR-ALS) framework. We benchmarked the SIML algorithm against non-negativity constrained MCR-ALS and parallel factor analysis 2 with flexible coupling (PARAFAC2 × N) using both simulated and real GC × GC-TOFMS datasets. Our results demonstrate that SIML provides unique solutions with significantly improved robustness, particularly in low signal-to-noise ratio scenarios, where it maintains high accuracy in estimating mass spectra and concentrations. The enhanced reliability of quantitative analyses afforded by SIML underscores its potential for broad application in complex matrix analyses across environmental science, food science, and biological research.</p>\n </div>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"39 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.3623","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a novel deconvolution algorithm, shift-invariant multi-linearity (SIML), which significantly enhances the analysis of data from two-dimensional gas chromatography instruments coupled to a time-of-flight mass spectrometer (GC × GC-TOFMS). Designed to address the challenges posed by retention time shifts and high noise levels, SIML incorporates wavelet-based smoothing and Fourier-transform based shift-correction within the multivariate curve resolution-alternating least squares (MCR-ALS) framework. We benchmarked the SIML algorithm against non-negativity constrained MCR-ALS and parallel factor analysis 2 with flexible coupling (PARAFAC2 × N) using both simulated and real GC × GC-TOFMS datasets. Our results demonstrate that SIML provides unique solutions with significantly improved robustness, particularly in low signal-to-noise ratio scenarios, where it maintains high accuracy in estimating mass spectra and concentrations. The enhanced reliability of quantitative analyses afforded by SIML underscores its potential for broad application in complex matrix analyses across environmental science, food science, and biological research.
期刊介绍:
The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.