Transcript and Lipid Profile Alterations in Astrocyte-Neuron Mitochondrial Transfer Under Lipopolysaccharide Exposure: An In Vitro Study

IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yufei Kan, Hong Wang, Huaying Lin, Yongfa Li, Shuaijie Pei, Yan Cui, Keliang Xie, Hongguang Chen, Yonghao Yu
{"title":"Transcript and Lipid Profile Alterations in Astrocyte-Neuron Mitochondrial Transfer Under Lipopolysaccharide Exposure: An In Vitro Study","authors":"Yufei Kan,&nbsp;Hong Wang,&nbsp;Huaying Lin,&nbsp;Yongfa Li,&nbsp;Shuaijie Pei,&nbsp;Yan Cui,&nbsp;Keliang Xie,&nbsp;Hongguang Chen,&nbsp;Yonghao Yu","doi":"10.1111/jnc.70003","DOIUrl":null,"url":null,"abstract":"<p>Sepsis-associated encephalopathy (SAE) is a brain dysfunction for which no effective therapy currently exists. Recent studies suggest that transferring mitochondria from astrocytes to neurons may benefit SAE patients, though the underlying mechanism remains unclear. We cultured astrocytes and neurons from mice in vitro. Astrocytes were stimulated with lipopolysaccharide (LPS) for 24 h, and the astrocyte-conditioned medium (ACM) was collected. Neuronal cultures were then treated with ACM or mitochondria-depleted ACM (mdACM) for further analysis. Mitochondrial transfer was examined under a fluorescence microscope. Western blotting analyzed the protein expression of genes related to apoptosis and mitochondrial metabolism. RNA sequencing and mass spectrometry were employed to investigate the mechanisms underlying mitochondrial transfer. Astrocyte-derived mitochondria migrated toward and connected with LPS-exposed neurons. The addition of ACM significantly attenuated LPS-induced alterations in the proteins linked to apoptosis and mitochondrial dynamics. RNA sequencing revealed notable alterations in the transcript profile of neurons upon ACM treatment, highlighting the involvement of mitochondria metabolism, inflammation, and apoptosis-related factors. Additionally, mitochondrial transfer modified the lipid composition of neurons, increasing phosphatidylserine levels, which correlated with neuroinflammation and enriched pathways related to cytokine and MAPK signaling. Our findings suggest that astrocyte-neuron mitochondrial transfer holds therapeutic potential for alleviating SAE, possibly through the anti-inflammatory effects of lipids, particularly phosphatidylserine.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 2","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.70003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jnc.70003","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sepsis-associated encephalopathy (SAE) is a brain dysfunction for which no effective therapy currently exists. Recent studies suggest that transferring mitochondria from astrocytes to neurons may benefit SAE patients, though the underlying mechanism remains unclear. We cultured astrocytes and neurons from mice in vitro. Astrocytes were stimulated with lipopolysaccharide (LPS) for 24 h, and the astrocyte-conditioned medium (ACM) was collected. Neuronal cultures were then treated with ACM or mitochondria-depleted ACM (mdACM) for further analysis. Mitochondrial transfer was examined under a fluorescence microscope. Western blotting analyzed the protein expression of genes related to apoptosis and mitochondrial metabolism. RNA sequencing and mass spectrometry were employed to investigate the mechanisms underlying mitochondrial transfer. Astrocyte-derived mitochondria migrated toward and connected with LPS-exposed neurons. The addition of ACM significantly attenuated LPS-induced alterations in the proteins linked to apoptosis and mitochondrial dynamics. RNA sequencing revealed notable alterations in the transcript profile of neurons upon ACM treatment, highlighting the involvement of mitochondria metabolism, inflammation, and apoptosis-related factors. Additionally, mitochondrial transfer modified the lipid composition of neurons, increasing phosphatidylserine levels, which correlated with neuroinflammation and enriched pathways related to cytokine and MAPK signaling. Our findings suggest that astrocyte-neuron mitochondrial transfer holds therapeutic potential for alleviating SAE, possibly through the anti-inflammatory effects of lipids, particularly phosphatidylserine.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neurochemistry
Journal of Neurochemistry 医学-神经科学
CiteScore
9.30
自引率
2.10%
发文量
181
审稿时长
2.2 months
期刊介绍: Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信