Rapid Synthesis of Self-Healing, pH-Responsive IA-Based Hydrogels via Frontal Polymerization

IF 3.9 3区 化学 Q2 POLYMER SCIENCE
Muhammad Irfan, Jiang Zhai, Qing Li, Su Chen, Guo-Xing Li, Ji Jun Xiao
{"title":"Rapid Synthesis of Self-Healing, pH-Responsive IA-Based Hydrogels via Frontal Polymerization","authors":"Muhammad Irfan,&nbsp;Jiang Zhai,&nbsp;Qing Li,&nbsp;Su Chen,&nbsp;Guo-Xing Li,&nbsp;Ji Jun Xiao","doi":"10.1002/pol.20240687","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Self-healing polymeric gels have emerged as a promising class of materials due to their ability to repair damage autonomously, offering significant advantages for various applications. Nevertheless, a major hurdle to their widespread practical use lies in their often-compromised mechanical strength and long reaction time. Herein, we present the synthesis of a new type of self-healing hydrogels using poly(itaconic acid-co-hydroxypropyl alcohol-co-acrylic acid), also known as poly(IA-co-HPA-co-AAc), by a frontal polymerization (FP) method. The rapid reaction rate of FP facilitates the swift and energy-efficient synthesis of the hydrogels within 10 min, eliminating the need for prolonged reaction times. Additionally, the results revealed that the synthesized hydrogels exhibited pH-dependent responsiveness, robust mechanical integrity, and autonomous self-healing capabilities, obviating the requirement for external stimuli. The exceptional self-healing properties can be attributed to the extensive hydrogen bonding network between the polymer chains, enabling them to recover up to 80% of their original mechanical strength. Rheological analysis confirmed the presence of a robust and stable gel network, evidenced by high storage modulus (<i>G</i>′) values across the entire frequency and strain sweep tests. This research addresses a significant knowledge gap in IA-based hydrogels by introducing a rapid, optimized method for constructing self-healing materials through hydrogen bonding interactions.</p>\n </div>","PeriodicalId":16888,"journal":{"name":"Journal of Polymer Science","volume":"63 2","pages":"342-357"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pol.20240687","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Self-healing polymeric gels have emerged as a promising class of materials due to their ability to repair damage autonomously, offering significant advantages for various applications. Nevertheless, a major hurdle to their widespread practical use lies in their often-compromised mechanical strength and long reaction time. Herein, we present the synthesis of a new type of self-healing hydrogels using poly(itaconic acid-co-hydroxypropyl alcohol-co-acrylic acid), also known as poly(IA-co-HPA-co-AAc), by a frontal polymerization (FP) method. The rapid reaction rate of FP facilitates the swift and energy-efficient synthesis of the hydrogels within 10 min, eliminating the need for prolonged reaction times. Additionally, the results revealed that the synthesized hydrogels exhibited pH-dependent responsiveness, robust mechanical integrity, and autonomous self-healing capabilities, obviating the requirement for external stimuli. The exceptional self-healing properties can be attributed to the extensive hydrogen bonding network between the polymer chains, enabling them to recover up to 80% of their original mechanical strength. Rheological analysis confirmed the presence of a robust and stable gel network, evidenced by high storage modulus (G′) values across the entire frequency and strain sweep tests. This research addresses a significant knowledge gap in IA-based hydrogels by introducing a rapid, optimized method for constructing self-healing materials through hydrogen bonding interactions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Polymer Science
Journal of Polymer Science POLYMER SCIENCE-
CiteScore
6.30
自引率
5.90%
发文量
264
期刊介绍: Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology. As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信