Tao Xue, Xiaoxue Chen, Jiacai Wang, Bo Zhang, Yanlei Sun, Jie Xin, Fengli Shao, Xinpeng Li
{"title":"Laminaria japonica polysaccharide protects against liver and kidney injury in diabetes mellitus through the AhR/CD36 pathway","authors":"Tao Xue, Xiaoxue Chen, Jiacai Wang, Bo Zhang, Yanlei Sun, Jie Xin, Fengli Shao, Xinpeng Li","doi":"10.1111/1750-3841.70033","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n \n <p>The lipid accumulation associated with diabetes causes continuous liver and kidney damage. Laminaria japonica polysaccharide (fucoidan) has been shown to regulate the disorder in lipid metabolism caused by diabetes. Herein, we established a diabetes mellitus (DM) rat model through a high-fat and high-sugar diet combined with streptozotocin. An automatic biochemical analyzer was used to detect serum lipid content, and hematoxylin and eosin, Masson, periodic acid-silver-methenamine, and Oil Red O staining were used to observe changes in the structure of the kidney and liver, including fibrosis and lipid accumulation. We confirmed that fucoidan could ameliorate renal injury, lipid metabolism, and oxidative stress in streptozotocin-induced diabetic rat models. Metabolomics analysis demonstrated that amino acid metabolism is an important process. We further demonstrated a novel role of fucoidan in regulating kidney and liver lipid metabolism through the aryl hydrocarbon receptor (AhR)-mediated CD36 signaling pathway. Similar results were found in DM rats treated with an AhR inhibitor, as well as in those treated with a combination of both an AhR inhibitor and fucoidan. Importantly, we observed a higher expression of AhR/CD36 in the kidneys and liver of rats with DM, and the level of AhR/CD36 correlated with lipid accumulation and kidney function, suggesting that AhR/CD36 signaling could be a promising therapeutic target for fucoidan in treating lipid metabolism in DM.</p>\n </section>\n \n <section>\n \n <h3> Practical Application</h3>\n \n <p>As the main component of <i>Laminaria japonica</i>, fucoidan has excellent antioxidant properties and protective effects against liver and kidney damage in diabetes mellitus. It can play a protective role in the daily diet of diabetic patients. Alternatively, it could be developed as a potential therapeutic drug for the treatment of diabetes.</p>\n </section>\n </div>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"90 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.70033","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The lipid accumulation associated with diabetes causes continuous liver and kidney damage. Laminaria japonica polysaccharide (fucoidan) has been shown to regulate the disorder in lipid metabolism caused by diabetes. Herein, we established a diabetes mellitus (DM) rat model through a high-fat and high-sugar diet combined with streptozotocin. An automatic biochemical analyzer was used to detect serum lipid content, and hematoxylin and eosin, Masson, periodic acid-silver-methenamine, and Oil Red O staining were used to observe changes in the structure of the kidney and liver, including fibrosis and lipid accumulation. We confirmed that fucoidan could ameliorate renal injury, lipid metabolism, and oxidative stress in streptozotocin-induced diabetic rat models. Metabolomics analysis demonstrated that amino acid metabolism is an important process. We further demonstrated a novel role of fucoidan in regulating kidney and liver lipid metabolism through the aryl hydrocarbon receptor (AhR)-mediated CD36 signaling pathway. Similar results were found in DM rats treated with an AhR inhibitor, as well as in those treated with a combination of both an AhR inhibitor and fucoidan. Importantly, we observed a higher expression of AhR/CD36 in the kidneys and liver of rats with DM, and the level of AhR/CD36 correlated with lipid accumulation and kidney function, suggesting that AhR/CD36 signaling could be a promising therapeutic target for fucoidan in treating lipid metabolism in DM.
Practical Application
As the main component of Laminaria japonica, fucoidan has excellent antioxidant properties and protective effects against liver and kidney damage in diabetes mellitus. It can play a protective role in the daily diet of diabetic patients. Alternatively, it could be developed as a potential therapeutic drug for the treatment of diabetes.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.