Enhancing Li+ Transportation at Graphite-Low Concentration Electrolyte Interface Via Interphase Modulation of LiNO3 and Vinylene Carbonate

IF 12
Yin Quan, Xiaoling Cui, Ling Hu, Yueqin Kong, Xiaojuan Zhang, Hongcheng Liang, Yu Zhu, Caiyun Wang, Ningshuang Zhang, Shiyou Li
{"title":"Enhancing Li+ Transportation at Graphite-Low Concentration Electrolyte Interface Via Interphase Modulation of LiNO3 and Vinylene Carbonate","authors":"Yin Quan,&nbsp;Xiaoling Cui,&nbsp;Ling Hu,&nbsp;Yueqin Kong,&nbsp;Xiaojuan Zhang,&nbsp;Hongcheng Liang,&nbsp;Yu Zhu,&nbsp;Caiyun Wang,&nbsp;Ningshuang Zhang,&nbsp;Shiyou Li","doi":"10.1002/cnl2.184","DOIUrl":null,"url":null,"abstract":"<p>The solvent-rich solvent sheath in low-concentration electrolytes (LCEs) not only results in high desolvation energy of Li<sup>+</sup>, but also forms organic-rich solid electrolyte interface film (SEI) with poor Li<sup>+</sup> conductivity, which hinders Li<sup>+</sup> transport at the electrode-electrolyte interface and greatly limits the application of LCEs. Here, the electrochemical performance of the LCEs is enhanced by dual interfacial modification with LiNO<sub>3</sub> and vinylene carbonate (VC) additives. Results show that LiNO<sub>3</sub> is preferentially reduced at about 1.65 V to form an inorganic-rich but incomplete SEI inner layer. The formation of Li<sub>3</sub>N and LiN<sub><i>x</i></sub>O<sub><i>y</i></sub> inorganic components helps to achieve rapid Li<sup>+</sup> transport in the SEI film, and the bare electrode surface caused by the incomplete SEI inner layer provides a place for the subsequent decomposition of VC. Then, at a lower potential of about 0.73 V, VC is reduced to generate the poly(VC)-rich SEI outer layer, which provides lithium-philic sites and greatly weakens the interaction between Li<sup>+</sup> and ethylene carbonate (EC). The interaction modulates the Li<sup>+</sup> solvation structure at the interface and reduces the desolvation energy of Li<sup>+</sup>. This ingenious design of the bilayer SEI film greatly enhances Li<sup>+</sup> transport and inhibits the decomposition of traditional carbonate solvents and the swelling of graphite. As a result, the electrochemical performance of the battery using 0.5 M LiPF<sub>6</sub> EC/diethyl carbonate (DEC) + 0.012 M LiNO<sub>3</sub> + 0.5 vt% VC is improved to a higher level than the one using 1.0 M LiPF<sub>6</sub> EC/DEC electrolyte. This research expands the design strategy and promising applications of LCEs by constructing a favorable SEI to enhance Li<sup>+</sup> transport at the electrode-electrolyte interface.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 1","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.184","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The solvent-rich solvent sheath in low-concentration electrolytes (LCEs) not only results in high desolvation energy of Li+, but also forms organic-rich solid electrolyte interface film (SEI) with poor Li+ conductivity, which hinders Li+ transport at the electrode-electrolyte interface and greatly limits the application of LCEs. Here, the electrochemical performance of the LCEs is enhanced by dual interfacial modification with LiNO3 and vinylene carbonate (VC) additives. Results show that LiNO3 is preferentially reduced at about 1.65 V to form an inorganic-rich but incomplete SEI inner layer. The formation of Li3N and LiNxOy inorganic components helps to achieve rapid Li+ transport in the SEI film, and the bare electrode surface caused by the incomplete SEI inner layer provides a place for the subsequent decomposition of VC. Then, at a lower potential of about 0.73 V, VC is reduced to generate the poly(VC)-rich SEI outer layer, which provides lithium-philic sites and greatly weakens the interaction between Li+ and ethylene carbonate (EC). The interaction modulates the Li+ solvation structure at the interface and reduces the desolvation energy of Li+. This ingenious design of the bilayer SEI film greatly enhances Li+ transport and inhibits the decomposition of traditional carbonate solvents and the swelling of graphite. As a result, the electrochemical performance of the battery using 0.5 M LiPF6 EC/diethyl carbonate (DEC) + 0.012 M LiNO3 + 0.5 vt% VC is improved to a higher level than the one using 1.0 M LiPF6 EC/DEC electrolyte. This research expands the design strategy and promising applications of LCEs by constructing a favorable SEI to enhance Li+ transport at the electrode-electrolyte interface.

Abstract Image

通过LiNO3和乙烯碳酸酯的界面相调制增强Li+在石墨-低浓度电解质界面的输运
低浓度电解质(LCEs)中富含溶剂的溶剂鞘层不仅导致Li+的高溶解能,而且形成Li+导电性差的富有机物固体电解质界面膜(SEI),阻碍了Li+在电极-电解质界面的传输,极大地限制了LCEs的应用。在这里,通过添加LiNO3和乙烯碳酸酯(VC)的双重界面改性,提高了LCEs的电化学性能。结果表明:LiNO3在约1.65 V时优先还原,形成富无机但不完整的SEI内层;Li3N和LiNxOy无机组分的形成有助于在SEI膜中实现Li+的快速输运,而SEI内层不完整导致的裸露电极表面为VC的后续分解提供了场所。然后,在约0.73 V的较低电位下,VC被还原生成富聚(VC)的SEI外层,该外层提供了亲锂位点,大大削弱了Li+与碳酸乙烯(EC)之间的相互作用。这种相互作用调节了界面处Li+的溶剂化结构,降低了Li+的溶剂化能。这种巧妙设计的双层SEI薄膜极大地增强了Li+的传输,抑制了传统碳酸盐溶剂的分解和石墨的膨胀。结果表明,使用0.5 M LiPF6 EC/碳酸二乙酯(DEC) + 0.012 M LiNO3 + 0.5 vt% VC的电池的电化学性能比使用1.0 M LiPF6 EC/DEC的电池有更高的提高。本研究通过构建有利的SEI来增强Li+在电极-电解质界面的输运,扩展了LCEs的设计策略和有前途的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信