eDNA Sampling Systems for Salmon Ecosystem Monitoring

Q1 Agricultural and Biological Sciences
Christoph M. Deeg, Robert G. Saunders, Christopher Tam, Karia Kaukinen, Shaorong Li, Arthur L. Bass, Uu-a-thluk Fisheries, Kristina M. Miller
{"title":"eDNA Sampling Systems for Salmon Ecosystem Monitoring","authors":"Christoph M. Deeg,&nbsp;Robert G. Saunders,&nbsp;Christopher Tam,&nbsp;Karia Kaukinen,&nbsp;Shaorong Li,&nbsp;Arthur L. Bass,&nbsp;Uu-a-thluk Fisheries,&nbsp;Kristina M. Miller","doi":"10.1002/edn3.70059","DOIUrl":null,"url":null,"abstract":"<p>Environmental DNA (eDNA) is transforming the way aquatic ecosystems are monitored and managed by scientists, resource managers, ENGOs, First Nations communities, and citizen scientists alike. However, available sampling systems currently don't allow for combined high filtration volumes, rapid sample collection, and preservation in the field, thus far hindering broad scale eDNA studies in the ocean specifically for small and medium scale organizations. To overcome these challenges, several modular water sampling systems that utilize hollow-membrane (HM) filtration cartridges were developed by RKS laboratories and tested by the Fisheries and Oceans, Canada, Molecular Genetics Laboratory. Compared to Sterivex filters, an industry standard for eDNA filtration, the HM filtration cartridges allowed for a six-fold increase in filtration volume and threefold increase in filtration speed. The field sampling systems, which combine pumps, a programmable controller, an air pump, an ozone generator, and up to eight filters at once, enabled efficient direct eDNA filtration from diverse aquatic environments, from creeks to the open ocean. To evaluate ease of deployment, we present the results of a 3 day workshop where technical staff of an Indigenous resource management organization, without any prior knowledge in eDNA sampling, were trained and performed independent eDNA sample collection. The samples were analyzed by metabarcoding and qPCR to reveal the distributions of salmon and other species co-occurring in salmon ecosystems, from large ephemeral predators, to the planktonic prey of salmon, even including their pathogens. In this example study, we further observed a substantial shift in community composition in the vicinity of aquaculture facilities where marine species associated with aquaculture feed were detected in freshwater at high relative abundance. This study demonstrates how these sampling systems provide an efficient entry point for small and medium scale organizations to utilize eDNA to fulfill their research and monitoring objectives.</p>","PeriodicalId":52828,"journal":{"name":"Environmental DNA","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/edn3.70059","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental DNA","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/edn3.70059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Environmental DNA (eDNA) is transforming the way aquatic ecosystems are monitored and managed by scientists, resource managers, ENGOs, First Nations communities, and citizen scientists alike. However, available sampling systems currently don't allow for combined high filtration volumes, rapid sample collection, and preservation in the field, thus far hindering broad scale eDNA studies in the ocean specifically for small and medium scale organizations. To overcome these challenges, several modular water sampling systems that utilize hollow-membrane (HM) filtration cartridges were developed by RKS laboratories and tested by the Fisheries and Oceans, Canada, Molecular Genetics Laboratory. Compared to Sterivex filters, an industry standard for eDNA filtration, the HM filtration cartridges allowed for a six-fold increase in filtration volume and threefold increase in filtration speed. The field sampling systems, which combine pumps, a programmable controller, an air pump, an ozone generator, and up to eight filters at once, enabled efficient direct eDNA filtration from diverse aquatic environments, from creeks to the open ocean. To evaluate ease of deployment, we present the results of a 3 day workshop where technical staff of an Indigenous resource management organization, without any prior knowledge in eDNA sampling, were trained and performed independent eDNA sample collection. The samples were analyzed by metabarcoding and qPCR to reveal the distributions of salmon and other species co-occurring in salmon ecosystems, from large ephemeral predators, to the planktonic prey of salmon, even including their pathogens. In this example study, we further observed a substantial shift in community composition in the vicinity of aquaculture facilities where marine species associated with aquaculture feed were detected in freshwater at high relative abundance. This study demonstrates how these sampling systems provide an efficient entry point for small and medium scale organizations to utilize eDNA to fulfill their research and monitoring objectives.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental DNA
Environmental DNA Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
11.00
自引率
0.00%
发文量
99
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信