Caterina Morelli, Simone Boccaletti, Paolo Maranzano, Philipp Otto
{"title":"Multidimensional Spatiotemporal Clustering – An Application to Environmental Sustainability Scores in Europe","authors":"Caterina Morelli, Simone Boccaletti, Paolo Maranzano, Philipp Otto","doi":"10.1002/env.2893","DOIUrl":null,"url":null,"abstract":"<p>The assessment of corporate sustainability performance is extremely relevant in facilitating the transition to a green and low-carbon intensity economy. However, companies located in different areas may be subject to different sustainability and environmental risks and policies. Henceforth, the main objective of this paper is to investigate the spatial and temporal pattern of the sustainability evaluations of European firms. We leverage a large dataset containing information about companies' sustainability performances, measured by MSCI ESG ratings, and geographical coordinates of firms in Western Europe between 2013 and 2023. By means of a modified version of the Chavent et al. (2018) hierarchical algorithm, we conduct a spatial clustering analysis, combining sustainability and spatial information, and a spatiotemporal clustering analysis, which combines the time dynamics of multiple sustainability features and spatial dissimilarities, to detect groups of firms with homogeneous sustainability performance. We are able to build cross-national and cross-industry clusters with remarkable differences in terms of sustainability scores. Among other results, in the spatio-temporal analysis, we observe a high degree of geographical overlap among clusters, indicating that the temporal dynamics in sustainability assessment are relevant within a multidimensional approach. Our findings help to capture the diversity of ESG ratings across Western Europe and may assist practitioners and policymakers in evaluating companies facing different sustainability-linked risks in different areas.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2893","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2893","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The assessment of corporate sustainability performance is extremely relevant in facilitating the transition to a green and low-carbon intensity economy. However, companies located in different areas may be subject to different sustainability and environmental risks and policies. Henceforth, the main objective of this paper is to investigate the spatial and temporal pattern of the sustainability evaluations of European firms. We leverage a large dataset containing information about companies' sustainability performances, measured by MSCI ESG ratings, and geographical coordinates of firms in Western Europe between 2013 and 2023. By means of a modified version of the Chavent et al. (2018) hierarchical algorithm, we conduct a spatial clustering analysis, combining sustainability and spatial information, and a spatiotemporal clustering analysis, which combines the time dynamics of multiple sustainability features and spatial dissimilarities, to detect groups of firms with homogeneous sustainability performance. We are able to build cross-national and cross-industry clusters with remarkable differences in terms of sustainability scores. Among other results, in the spatio-temporal analysis, we observe a high degree of geographical overlap among clusters, indicating that the temporal dynamics in sustainability assessment are relevant within a multidimensional approach. Our findings help to capture the diversity of ESG ratings across Western Europe and may assist practitioners and policymakers in evaluating companies facing different sustainability-linked risks in different areas.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.