Resilient Event-Triggered Control for Switched Systems With Reconstructed Switching Signals Under DoS Attacks

IF 3.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Fanfan Li, Yuangong Sun, Zhiqiang Zhang, Xingao Zhu
{"title":"Resilient Event-Triggered Control for Switched Systems With Reconstructed Switching Signals Under DoS Attacks","authors":"Fanfan Li,&nbsp;Yuangong Sun,&nbsp;Zhiqiang Zhang,&nbsp;Xingao Zhu","doi":"10.1002/rnc.7682","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this article, the resilient event-triggered control issue for switched linear systems with the bounded disturbance is explored under the aperiodic denial-of-service (DoS) attacks. Unlike the discussions on asynchronous behavior caused by network transmission/DoS attacks, configure a copy of predictor at controller module to avert the negative impacts of asynchronous switching. Subsequently, by establishing a resilient event-triggered strategy (RETS) to eliminate invalid sampling during DoS attacks intervals, the waste of network resources is reduced. Besides, a sufficient condition is derived to ensure the input-to-state stability (ISS) for the close-loop switched systems under DoS attacks. The results indicate that the switched systems can resist a certain degree of DoS attacks under the average dwell time (ADT) constrained by DoS attacks frequency and duration. In addition, Zeno behavior is eliminated by calculating the lower bound of the triggering intervals. Finally, the availability of theoretical approach is verified through a numerical simulation.</p>\n </div>","PeriodicalId":50291,"journal":{"name":"International Journal of Robust and Nonlinear Control","volume":"35 2","pages":"717-728"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robust and Nonlinear Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rnc.7682","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, the resilient event-triggered control issue for switched linear systems with the bounded disturbance is explored under the aperiodic denial-of-service (DoS) attacks. Unlike the discussions on asynchronous behavior caused by network transmission/DoS attacks, configure a copy of predictor at controller module to avert the negative impacts of asynchronous switching. Subsequently, by establishing a resilient event-triggered strategy (RETS) to eliminate invalid sampling during DoS attacks intervals, the waste of network resources is reduced. Besides, a sufficient condition is derived to ensure the input-to-state stability (ISS) for the close-loop switched systems under DoS attacks. The results indicate that the switched systems can resist a certain degree of DoS attacks under the average dwell time (ADT) constrained by DoS attacks frequency and duration. In addition, Zeno behavior is eliminated by calculating the lower bound of the triggering intervals. Finally, the availability of theoretical approach is verified through a numerical simulation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Robust and Nonlinear Control
International Journal of Robust and Nonlinear Control 工程技术-工程:电子与电气
CiteScore
6.70
自引率
20.50%
发文量
505
审稿时长
2.7 months
期刊介绍: Papers that do not include an element of robust or nonlinear control and estimation theory will not be considered by the journal, and all papers will be expected to include significant novel content. The focus of the journal is on model based control design approaches rather than heuristic or rule based methods. Papers on neural networks will have to be of exceptional novelty to be considered for the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信