Pyrolysis Kinetics of Polytetrafluoroethylene (PTFE)

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Yongjin Wang, Shengkai Wang, Qingzhao Chu, Dongping Chen
{"title":"Pyrolysis Kinetics of Polytetrafluoroethylene (PTFE)","authors":"Yongjin Wang,&nbsp;Shengkai Wang,&nbsp;Qingzhao Chu,&nbsp;Dongping Chen","doi":"10.1002/qua.70015","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Polytetrafluoroethylene (PTFE) is widely used in fields such as propellants and flame retardants. However, this is still a vacancy of detailed kinetic mechanisms to describe the complete decomposition of PTFE in the gas phase. The current work addresses this issue by conducting ab initio calculations for key reactions involved in the PTFE pyrolysis system. The potential energy surfaces (PESs) of PTFE unimolecular and bimolecular reactions are determined at the DLPNO-CCSD(T)/cc-pVTZ//B3LYP-D3/6–31++G(d,p) level. Rate constants and branching ratios of the main reaction pathways are calculated by solving the RRKM master equation, and the thermochemical properties of related species at the DLPNO-CCSD(T)/CBS level are calculated via the atomization method. The current study found that the initial decomposition of PTFE is dominated by the C<span></span>C scission reactions and free radical (H, OH, CF, CF<sub>2</sub>, and CF<sub>3</sub>) abstraction reactions, forming the corresponding free radical species. Further β-C<span></span>C scission reactions dominate the overall kinetics and continuously generate CF<sub>2</sub>CF<sub>2</sub>. Self-decomposition and free radical–driven decomposition of PTFE produce small molecules such as HF, FOH, CF<sub>2</sub>, CF<sub>3</sub>, and CF<sub>4</sub>. This work provides quantitative predictions of the detailed decomposition reaction pathways of gas-phase PTFE and will lay a solid foundation for the development of detailed kinetic mechanisms for PTFE combustion and degradation.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"125 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.70015","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polytetrafluoroethylene (PTFE) is widely used in fields such as propellants and flame retardants. However, this is still a vacancy of detailed kinetic mechanisms to describe the complete decomposition of PTFE in the gas phase. The current work addresses this issue by conducting ab initio calculations for key reactions involved in the PTFE pyrolysis system. The potential energy surfaces (PESs) of PTFE unimolecular and bimolecular reactions are determined at the DLPNO-CCSD(T)/cc-pVTZ//B3LYP-D3/6–31++G(d,p) level. Rate constants and branching ratios of the main reaction pathways are calculated by solving the RRKM master equation, and the thermochemical properties of related species at the DLPNO-CCSD(T)/CBS level are calculated via the atomization method. The current study found that the initial decomposition of PTFE is dominated by the CC scission reactions and free radical (H, OH, CF, CF2, and CF3) abstraction reactions, forming the corresponding free radical species. Further β-CC scission reactions dominate the overall kinetics and continuously generate CF2CF2. Self-decomposition and free radical–driven decomposition of PTFE produce small molecules such as HF, FOH, CF2, CF3, and CF4. This work provides quantitative predictions of the detailed decomposition reaction pathways of gas-phase PTFE and will lay a solid foundation for the development of detailed kinetic mechanisms for PTFE combustion and degradation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信