Principal Component Analysis: Standardisation

IF 2.1 4区 化学 Q1 SOCIAL WORK
Richard G. Brereton
{"title":"Principal Component Analysis: Standardisation","authors":"Richard G. Brereton","doi":"10.1002/cem.3607","DOIUrl":null,"url":null,"abstract":"<p>Standardisation of the columns of a matrix is a common transformation prior to PCA. It can be called by different names, including autoscaling and normalisation. The latter term is confusing terminology, as it is also used for a number of other transformations, so we advise against calling this normalisation.</p><p>As standardisation is about scaling and not statistical estimation, it is best to use the definition of the population standard deviation <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>s</mi>\n <mi>j</mi>\n </msub>\n <mo>=</mo>\n <msqrt>\n <mrow>\n <munderover>\n <mo>∑</mo>\n <mrow>\n <mi>i</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mi>I</mi>\n </munderover>\n <msup>\n <mfenced>\n <mrow>\n <msub>\n <mi>x</mi>\n <mi>ij</mi>\n </msub>\n <mo>−</mo>\n <msub>\n <mover>\n <mi>x</mi>\n <mo>¯</mo>\n </mover>\n <mi>j</mi>\n </msub>\n </mrow>\n </mfenced>\n <mn>2</mn>\n </msup>\n <mo>/</mo>\n <mi>I</mi>\n </mrow>\n </msqrt>\n </mrow>\n <annotation>$$ {s}_j=\\sqrt{\\sum \\limits_{i=1}^I{\\left({x}_{\\mathrm{ij}}-{\\overline{x}}_j\\right)}^2/I} $$</annotation>\n </semantics></math> rather than the sample standard deviation.</p><p>We can now standardise each matrix. To save room, we just calculate one numerical value so that readers that are interested can check they can reproduce the results from this article. The standardised value for Dataset 1 <i>x</i><sub>83</sub> = 0.566 (Sample H, variable <i>x</i><sub>3</sub>).</p><p>Hence, whether standardisation prior to PCA is a useful technique depends on the nature of the data and the problem in hand. In some cases, it can degrade patterns, whereas in other situations it can pull out important information.</p><p>Although standardisation can make a big difference to the appearance of PC plots, in other cases, it makes little or no difference.</p>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"39 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cem.3607","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.3607","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0

Abstract

Standardisation of the columns of a matrix is a common transformation prior to PCA. It can be called by different names, including autoscaling and normalisation. The latter term is confusing terminology, as it is also used for a number of other transformations, so we advise against calling this normalisation.

As standardisation is about scaling and not statistical estimation, it is best to use the definition of the population standard deviation s j = i = 1 I x ij x ¯ j 2 / I $$ {s}_j=\sqrt{\sum \limits_{i=1}^I{\left({x}_{\mathrm{ij}}-{\overline{x}}_j\right)}^2/I} $$ rather than the sample standard deviation.

We can now standardise each matrix. To save room, we just calculate one numerical value so that readers that are interested can check they can reproduce the results from this article. The standardised value for Dataset 1 x83 = 0.566 (Sample H, variable x3).

Hence, whether standardisation prior to PCA is a useful technique depends on the nature of the data and the problem in hand. In some cases, it can degrade patterns, whereas in other situations it can pull out important information.

Although standardisation can make a big difference to the appearance of PC plots, in other cases, it makes little or no difference.

Abstract Image

主成分分析:标准化
矩阵列的标准化是PCA之前常见的变换。它可以有不同的名称,包括自动缩放和规范化。后一个术语是令人困惑的术语,因为它也用于许多其他转换,所以我们建议不要将其称为规范化。由于标准化是关于规模而不是统计估计,最好使用总体标准差s j =∑I = 1的定义ixij - x¯j 2 / I $$ {s}_j=\sqrt{\sum \limits_{i=1}^I{\left({x}_{\mathrm{ij}}-{\overline{x}}_j\right)}^2/I} $$而不是样本标准差。我们现在可以标准化每个矩阵。为了节省空间,我们只计算一个数值,以便感兴趣的读者可以查看并重现本文的结果。数据集1的标准化值x83 = 0.566(样本H,变量x3)。因此,在PCA之前的标准化是否是一种有用的技术取决于数据的性质和手头的问题。在某些情况下,它可以降低模式,而在其他情况下,它可以提取重要信息。虽然标准化可以对PC图的外观产生很大的影响,但在其他情况下,它几乎没有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemometrics
Journal of Chemometrics 化学-分析化学
CiteScore
5.20
自引率
8.30%
发文量
78
审稿时长
2 months
期刊介绍: The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信