Mechanistic Multiscale Simulations and Charge Transport Properties of Amorphous and Crystalline α-NPD Molecular Conformations: Insights From Molecule to Material Level

IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC
Simplice Koudjina, Vipin Kumar, Anuj Tripathi, Guy Yacole Sylvain Atohoun, Joachim Djimon Gbenou, Prabhakar Chetti
{"title":"Mechanistic Multiscale Simulations and Charge Transport Properties of Amorphous and Crystalline α-NPD Molecular Conformations: Insights From Molecule to Material Level","authors":"Simplice Koudjina,&nbsp;Vipin Kumar,&nbsp;Anuj Tripathi,&nbsp;Guy Yacole Sylvain Atohoun,&nbsp;Joachim Djimon Gbenou,&nbsp;Prabhakar Chetti","doi":"10.1002/poc.4677","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The optoelectronic and charge transfer integral properties of N,N′-di(1-naphthyl)-N,N′-diphenyl-4,4′-diamine (α-NPD) organic light-emitting diode (OLED) in amorphous and crystalline structures is studied based on the Marcus–Levitch–Jortner theory and quantum chemistry calculations. The charge transfer integral simulations have been investigated through hole-hopping regime from molecule-to-molecule in dimers molecules and are determined by <span></span><math>\n <semantics>\n <mrow>\n <mtext>HOMO</mtext>\n <mo>→</mo>\n <mtext>LUMO</mtext>\n </mrow>\n <annotation>$$ \\mathrm{HOMO}\\to \\mathrm{LUMO} $$</annotation>\n </semantics></math> frontier molecular orbitals (FMOs) for hole and electron transport. Quantum approaches with TD/DFT and DFT have been used to describe the most relevant electronic transitions of α-NPD, which present <span></span><math>\n <semantics>\n <mrow>\n <mi>π</mi>\n <mo>→</mo>\n <msup>\n <mi>π</mi>\n <mo>*</mo>\n </msup>\n </mrow>\n <annotation>$$ \\pi \\to {\\pi}^{\\ast } $$</annotation>\n </semantics></math> character in harmony with the solvent states. Furthermore, the obtained results reveal that geometric deformations have been relied to naphthalene form and benzene rings in α-NPD structures, and the charge transfer integral in amorphous state shows <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>t</mi>\n <mtext>hole</mtext>\n </msub>\n <mo>=</mo>\n <mn>4.46</mn>\n <mspace></mspace>\n <mi>meV</mi>\n </mrow>\n <annotation>$$ {t}_{\\mathrm{hole}}=4.46\\ \\mathrm{meV} $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>t</mi>\n <mtext>elec</mtext>\n </msub>\n <mo>=</mo>\n <mn>3.18</mn>\n <mspace></mspace>\n <mi>meV</mi>\n </mrow>\n <annotation>$$ {t}_{\\mathrm{elec}}=3.18\\ \\mathrm{meV} $$</annotation>\n </semantics></math>, and in the crystalline state, it shows <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>t</mi>\n <mtext>hole</mtext>\n </msub>\n <mo>=</mo>\n <mn>4.25</mn>\n <mspace></mspace>\n <mi>meV</mi>\n </mrow>\n <annotation>$$ {t}_{\\mathrm{hole}}=4.25\\ \\mathrm{meV} $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>t</mi>\n <mtext>elec</mtext>\n </msub>\n <mo>=</mo>\n <mn>3.95</mn>\n <mspace></mspace>\n <mi>meV</mi>\n </mrow>\n <annotation>$$ {t}_{\\mathrm{elec}}=3.95\\ \\mathrm{meV} $$</annotation>\n </semantics></math>. Comparing the transfer integrals average of hole/electron in the both amorphous and crystalline states, a higher value of hole transfer is explored in the amorphous form. The charge transfer transition obtained from FMO states and density of states (DOS), as well as reorganization energies values, indicates that α-NPD would be an effective organic electronic hole transport material.</p>\n </div>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"38 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.4677","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

The optoelectronic and charge transfer integral properties of N,N′-di(1-naphthyl)-N,N′-diphenyl-4,4′-diamine (α-NPD) organic light-emitting diode (OLED) in amorphous and crystalline structures is studied based on the Marcus–Levitch–Jortner theory and quantum chemistry calculations. The charge transfer integral simulations have been investigated through hole-hopping regime from molecule-to-molecule in dimers molecules and are determined by HOMO LUMO $$ \mathrm{HOMO}\to \mathrm{LUMO} $$ frontier molecular orbitals (FMOs) for hole and electron transport. Quantum approaches with TD/DFT and DFT have been used to describe the most relevant electronic transitions of α-NPD, which present π π * $$ \pi \to {\pi}^{\ast } $$ character in harmony with the solvent states. Furthermore, the obtained results reveal that geometric deformations have been relied to naphthalene form and benzene rings in α-NPD structures, and the charge transfer integral in amorphous state shows t hole = 4.46 meV $$ {t}_{\mathrm{hole}}=4.46\ \mathrm{meV} $$ and t elec = 3.18 meV $$ {t}_{\mathrm{elec}}=3.18\ \mathrm{meV} $$ , and in the crystalline state, it shows t hole = 4.25 meV $$ {t}_{\mathrm{hole}}=4.25\ \mathrm{meV} $$ and t elec = 3.95 meV $$ {t}_{\mathrm{elec}}=3.95\ \mathrm{meV} $$ . Comparing the transfer integrals average of hole/electron in the both amorphous and crystalline states, a higher value of hole transfer is explored in the amorphous form. The charge transfer transition obtained from FMO states and density of states (DOS), as well as reorganization energies values, indicates that α-NPD would be an effective organic electronic hole transport material.

非晶和晶体α-NPD分子构象的多尺度模拟和电荷输运性质:从分子到材料水平的见解
基于Marcus-Levitch-Jortner理论和量子化学计算,研究了N,N ' -二(1-萘基)-N,N ' -二苯基-4,4 ' -二胺(α-NPD)有机发光二极管(OLED)在非晶和晶体结构下的光电和电荷转移积分性质。通过二聚体分子间的空穴跳跃机制研究了电荷转移积分模拟,并由空穴和电子传递的HOMO→LUMO $$ \mathrm{HOMO}\to \mathrm{LUMO} $$前沿分子轨道(FMOs)决定。利用TD/DFT和DFT的量子方法描述了α-NPD最相关的电子跃迁,它们呈现与溶剂态一致的π→π * $$ \pi \to {\pi}^{\ast } $$特征。此外,得到的结果表明,α-NPD结构中的几何变形主要依赖于萘形式和苯环。非晶态电荷转移积分t hole = 4.46 meV $$ {t}_{\mathrm{hole}}=4.46\ \mathrm{meV} $$, t elec = 3.18meV $$ {t}_{\mathrm{elec}}=3.18\ \mathrm{meV} $$,在晶体状态下,t穴= 4.25 meV $$ {t}_{\mathrm{hole}}=4.25\ \mathrm{meV} $$, t电= 3.95 meV $$ {t}_{\mathrm{elec}}=3.95\ \mathrm{meV} $$。比较了非晶态和晶态空穴/电子的平均转移积分,发现非晶态的空穴转移值更高。FMO态的电荷转移跃迁、态密度(DOS)和重组能值表明α-NPD是一种有效的有机电子空穴输运材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
11.10%
发文量
161
审稿时长
2.3 months
期刊介绍: The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信