Correction to “The hyper-Wiener index of diamond nanowires”

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
{"title":"Correction to “The hyper-Wiener index of diamond nanowires”","authors":"","doi":"10.1002/qua.27514","DOIUrl":null,"url":null,"abstract":"<p>\n <span>B. Nagy</span>, “ <span>The Hyper-Wiener Index of Diamond Nanowires</span>,” <i>International Journal of Quantum Chemistry</i> <span>124</span>, no. <span>1</span> (<span>2024</span>): e27258.</p><p>There is a miscalculation in the above paper; the correct formula and value of hyper-Wiener indices are presented here. The numbering is from the original article; the correct versions of the equations with the corrected proof can be found below.</p><p>Now we state our main results.</p><p>\n </p><p>\n </p><p>\n </p><p>Some of the first elements of the sequence defined above give the hyper-Wiener index of relatively small diamond grid samples, that is, <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mi>W</mi>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n <mo>=</mo>\n <mn>460</mn>\n </mrow>\n <annotation>$$ WW\\left({G}_1\\right)=460 $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mi>W</mi>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n <mo>=</mo>\n <mn>3556</mn>\n </mrow>\n <annotation>$$ WW\\left({G}_2\\right)=3556 $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mi>W</mi>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n <mo>=</mo>\n <mn>14</mn>\n <mspace></mspace>\n <mn>306</mn>\n </mrow>\n <annotation>$$ WW\\left({G}_3\\right)=14\\kern0.2em 306 $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mi>W</mi>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mn>4</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n <mo>=</mo>\n <mn>40</mn>\n <mspace></mspace>\n <mn>432</mn>\n </mrow>\n <annotation>$$ WW\\left({G}_4\\right)=40\\kern.2em 432 $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mi>W</mi>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mn>5</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n <mo>=</mo>\n <mn>92</mn>\n <mspace></mspace>\n <mn>360</mn>\n </mrow>\n <annotation>$$ WW\\left({G}_5\\right)=92\\kern.2em 360 $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mi>W</mi>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mn>6</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n <mo>=</mo>\n <mn>183</mn>\n <mspace></mspace>\n <mn>220</mn>\n </mrow>\n <annotation>$$ WW\\left({G}_6\\right)=183\\kern.2em 220 $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mi>W</mi>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mn>7</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n <mo>=</mo>\n <mn>328</mn>\n <mspace></mspace>\n <mn>846</mn>\n </mrow>\n <annotation>$$ WW\\left({G}_7\\right)=328\\kern.2em 846 $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mi>W</mi>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mn>8</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n <mo>=</mo>\n <mn>547</mn>\n <mspace></mspace>\n <mn>776</mn>\n </mrow>\n <annotation>$$ WW\\left({G}_8\\right)=547\\kern.2em 776 $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mi>W</mi>\n <mo>(</mo>\n <msub>\n <mi>G</mi>\n <mn>9</mn>\n </msub>\n <mo>)</mo>\n <mo>=</mo>\n <mn>861</mn>\n <mspace></mspace>\n <mn>252</mn>\n </mrow>\n <annotation>$$ WW\\left({G}_9\\right)=861\\kern0.2em 252 $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mi>W</mi>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mn>10</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n <mo>=</mo>\n <mn>1</mn>\n <mspace></mspace>\n <mn>293</mn>\n <mspace></mspace>\n <mn>220</mn>\n </mrow>\n <annotation>$$ WW\\left({G}_{10}\\right)=1\\kern.2em 293\\kern.2em 220 $$</annotation>\n </semantics></math> for the graphs representing 1 to 10 unit cells next to each other in the diamond grid.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"125 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qua.27514","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27514","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

B. Nagy, “ The Hyper-Wiener Index of Diamond Nanowires,” International Journal of Quantum Chemistry 124, no. 1 (2024): e27258.

There is a miscalculation in the above paper; the correct formula and value of hyper-Wiener indices are presented here. The numbering is from the original article; the correct versions of the equations with the corrected proof can be found below.

Now we state our main results.

Some of the first elements of the sequence defined above give the hyper-Wiener index of relatively small diamond grid samples, that is, W W ( G 1 ) = 460 $$ WW\left({G}_1\right)=460 $$ , W W ( G 2 ) = 3556 $$ WW\left({G}_2\right)=3556 $$ , W W ( G 3 ) = 14 306 $$ WW\left({G}_3\right)=14\kern0.2em 306 $$ , W W ( G 4 ) = 40 432 $$ WW\left({G}_4\right)=40\kern.2em 432 $$ , W W ( G 5 ) = 92 360 $$ WW\left({G}_5\right)=92\kern.2em 360 $$ , W W ( G 6 ) = 183 220 $$ WW\left({G}_6\right)=183\kern.2em 220 $$ , W W ( G 7 ) = 328 846 $$ WW\left({G}_7\right)=328\kern.2em 846 $$ , W W ( G 8 ) = 547 776 $$ WW\left({G}_8\right)=547\kern.2em 776 $$ , W W ( G 9 ) = 861 252 $$ WW\left({G}_9\right)=861\kern0.2em 252 $$ and W W ( G 10 ) = 1 293 220 $$ WW\left({G}_{10}\right)=1\kern.2em 293\kern.2em 220 $$ for the graphs representing 1 to 10 unit cells next to each other in the diamond grid.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信