{"title":"Hybrid spatial and channel attention in post-accident object detection","authors":"Junyoung Kim, Soomok Lee","doi":"10.1049/itr2.12594","DOIUrl":null,"url":null,"abstract":"<p>Analysing post-accident scenes using in-vehicle cameras is crucial for effective highway traffic control and enhancing accident response, road safety, and traffic flow. This contributes to a comprehensive understanding of the situation and achieves better decision-making and effective management. The accident scene report system is designed to focus on specific post-accident objects, such as crashed vehicles, involved individuals, emergency vehicles, and debris. This means that the post-accident object detection algorithm needs to handle a wide variety of objects, from large collapsed vehicles to tiny particles. It should operate in real-time on embedded boards, balancing detection accuracy and compactness to fit within the constraints of embedded computing modules. This approach aims to facilitate prompt reporting to traffic control centres. In this study, a hybrid spatial and channel attention and its pruning algorithm tailored for object detection in post-accident scenarios are proposed. This approach markedly enhances the detection performance in the unexpected accidents and malfunctioning scenes, significantly boosting the system's accuracy and processing speed. The method optimally balances the model compactness with seamless attention and pruning, making it highly suitable for real-time applications in traffic monitoring systems. The proposed seamless attention and pruning method is demonstrated using the proposed accident object detection dataset.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12594","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12594","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Analysing post-accident scenes using in-vehicle cameras is crucial for effective highway traffic control and enhancing accident response, road safety, and traffic flow. This contributes to a comprehensive understanding of the situation and achieves better decision-making and effective management. The accident scene report system is designed to focus on specific post-accident objects, such as crashed vehicles, involved individuals, emergency vehicles, and debris. This means that the post-accident object detection algorithm needs to handle a wide variety of objects, from large collapsed vehicles to tiny particles. It should operate in real-time on embedded boards, balancing detection accuracy and compactness to fit within the constraints of embedded computing modules. This approach aims to facilitate prompt reporting to traffic control centres. In this study, a hybrid spatial and channel attention and its pruning algorithm tailored for object detection in post-accident scenarios are proposed. This approach markedly enhances the detection performance in the unexpected accidents and malfunctioning scenes, significantly boosting the system's accuracy and processing speed. The method optimally balances the model compactness with seamless attention and pruning, making it highly suitable for real-time applications in traffic monitoring systems. The proposed seamless attention and pruning method is demonstrated using the proposed accident object detection dataset.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf