{"title":"Construction of Smooth Source–Sink Arcs in the Space of Diffeomorphisms of a Two-Dimensional Sphere","authors":"E. V. Nozdrinova, O. V. Pochinka, E. V. Tsaplina","doi":"10.1134/S1064562424702260","DOIUrl":null,"url":null,"abstract":"<p>It is well known that the mapping class group of the two-dimensional sphere <span>\\({{\\mathbb{S}}^{2}}\\)</span> is isomorphic to the group <span>\\({{\\mathbb{Z}}_{2}} = \\{ - 1, + 1\\} \\)</span>. At the same time, the class +1(–1) contains all orientation-preserving (orientation-reversing) diffeomorphisms and any two diffeomorphisms of the same class are diffeotopic, that is, they are connected by a smooth arc of diffeomorphisms. On the other hand, each class of maps contains structurally stable diffeomorphisms. It is obvious that in the general case, the arc connecting two diffeotopic structurally stable diffeomorphisms undergoes bifurcations that destroy structural stability. In this direction, it is particular interesting in the question of the existence of a connecting them stable arc – an arc pointwise conjugate to arcs in some of its neighborhood. In general, diffeotopic structurally stable diffeomorphisms of the 2-sphere are not connected by a stable arc. In this paper, the simplest structurally stable diffeomorphisms (source–sink diffeomorphisms) of the 2-sphere are considered. The non-wandering set of such diffeomorphisms consists of two hyperbolic points: the source and the sink. In this paper, the existence of an arc connecting two such orientation-preserving (orientation-reversing) diffeomorphisms and consisting entirely of source-sink diffeomorphisms is constructively proved.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"110 2","pages":"379 - 385"},"PeriodicalIF":0.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424702260","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
It is well known that the mapping class group of the two-dimensional sphere \({{\mathbb{S}}^{2}}\) is isomorphic to the group \({{\mathbb{Z}}_{2}} = \{ - 1, + 1\} \). At the same time, the class +1(–1) contains all orientation-preserving (orientation-reversing) diffeomorphisms and any two diffeomorphisms of the same class are diffeotopic, that is, they are connected by a smooth arc of diffeomorphisms. On the other hand, each class of maps contains structurally stable diffeomorphisms. It is obvious that in the general case, the arc connecting two diffeotopic structurally stable diffeomorphisms undergoes bifurcations that destroy structural stability. In this direction, it is particular interesting in the question of the existence of a connecting them stable arc – an arc pointwise conjugate to arcs in some of its neighborhood. In general, diffeotopic structurally stable diffeomorphisms of the 2-sphere are not connected by a stable arc. In this paper, the simplest structurally stable diffeomorphisms (source–sink diffeomorphisms) of the 2-sphere are considered. The non-wandering set of such diffeomorphisms consists of two hyperbolic points: the source and the sink. In this paper, the existence of an arc connecting two such orientation-preserving (orientation-reversing) diffeomorphisms and consisting entirely of source-sink diffeomorphisms is constructively proved.
期刊介绍:
Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.