Permutation and local permutation polynomials of maximum degree

IF 0.9 Q2 MATHEMATICS
Jaime Gutierrez, Jorge Jiménez Urroz
{"title":"Permutation and local permutation polynomials of maximum degree","authors":"Jaime Gutierrez,&nbsp;Jorge Jiménez Urroz","doi":"10.1007/s13370-025-01247-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathbb {F}_q\\)</span> be the finite field with <i>q</i> elements and <span>\\(\\mathbb {F}_q[x_1,\\ldots , x_n]\\)</span> the ring of polynomials in <i>n</i> variables over <span>\\(\\mathbb {F}_q\\)</span>. In this paper we consider permutation polynomials and local permutation polynomials over <span>\\(\\mathbb {F}_q[x_1,\\ldots , x_n]\\)</span>, which define interesting generalizations of permutations over finite fields. We are able to construct permutation polynomials in <span>\\(\\mathbb {F}_q[x_1,\\ldots , x_n]\\)</span> of maximum degree <span>\\(n(q-1)-1\\)</span> and local permutation polynomials in <span>\\(\\mathbb {F}_q[x_1,\\ldots , x_n]\\)</span> of maximum degree <span>\\(n(q-2)\\)</span> when <span>\\(q&gt;3\\)</span>, extending previous results.\n</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-025-01247-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01247-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\mathbb {F}_q\) be the finite field with q elements and \(\mathbb {F}_q[x_1,\ldots , x_n]\) the ring of polynomials in n variables over \(\mathbb {F}_q\). In this paper we consider permutation polynomials and local permutation polynomials over \(\mathbb {F}_q[x_1,\ldots , x_n]\), which define interesting generalizations of permutations over finite fields. We are able to construct permutation polynomials in \(\mathbb {F}_q[x_1,\ldots , x_n]\) of maximum degree \(n(q-1)-1\) and local permutation polynomials in \(\mathbb {F}_q[x_1,\ldots , x_n]\) of maximum degree \(n(q-2)\) when \(q>3\), extending previous results.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信