{"title":"Permutation and local permutation polynomials of maximum degree","authors":"Jaime Gutierrez, Jorge Jiménez Urroz","doi":"10.1007/s13370-025-01247-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathbb {F}_q\\)</span> be the finite field with <i>q</i> elements and <span>\\(\\mathbb {F}_q[x_1,\\ldots , x_n]\\)</span> the ring of polynomials in <i>n</i> variables over <span>\\(\\mathbb {F}_q\\)</span>. In this paper we consider permutation polynomials and local permutation polynomials over <span>\\(\\mathbb {F}_q[x_1,\\ldots , x_n]\\)</span>, which define interesting generalizations of permutations over finite fields. We are able to construct permutation polynomials in <span>\\(\\mathbb {F}_q[x_1,\\ldots , x_n]\\)</span> of maximum degree <span>\\(n(q-1)-1\\)</span> and local permutation polynomials in <span>\\(\\mathbb {F}_q[x_1,\\ldots , x_n]\\)</span> of maximum degree <span>\\(n(q-2)\\)</span> when <span>\\(q>3\\)</span>, extending previous results.\n</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-025-01247-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01247-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let \(\mathbb {F}_q\) be the finite field with q elements and \(\mathbb {F}_q[x_1,\ldots , x_n]\) the ring of polynomials in n variables over \(\mathbb {F}_q\). In this paper we consider permutation polynomials and local permutation polynomials over \(\mathbb {F}_q[x_1,\ldots , x_n]\), which define interesting generalizations of permutations over finite fields. We are able to construct permutation polynomials in \(\mathbb {F}_q[x_1,\ldots , x_n]\) of maximum degree \(n(q-1)-1\) and local permutation polynomials in \(\mathbb {F}_q[x_1,\ldots , x_n]\) of maximum degree \(n(q-2)\) when \(q>3\), extending previous results.