AI support meets AR visualization for Alice and Bob: personalized learning based on individual ChatGPT feedback in an AR quantum cryptography experiment for physics lab courses

IF 5.8 2区 物理与天体物理 Q1 OPTICS
Atakan Coban, David Dzsotjan, Stefan Küchemann, Jürgen Durst, Jochen Kuhn, Christoph Hoyer
{"title":"AI support meets AR visualization for Alice and Bob: personalized learning based on individual ChatGPT feedback in an AR quantum cryptography experiment for physics lab courses","authors":"Atakan Coban,&nbsp;David Dzsotjan,&nbsp;Stefan Küchemann,&nbsp;Jürgen Durst,&nbsp;Jochen Kuhn,&nbsp;Christoph Hoyer","doi":"10.1140/epjqt/s40507-025-00310-z","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum cryptography is a central topic in the quantum technology field that is particularly important for secure communication. The training of qualified experts in this field is necessary for continuous development. However, the abstract and complex nature of quantum physics makes the topic difficult to understand. Augmented reality (AR) allows otherwise invisible abstract concepts to be visualized and enables interactive learning, offering significant potential for improving quantum physics education in university lab courses. In addition, personalized feedback on challenging concepts can facilitate learning, and large language models (LLMs) like ChatGPT can effectively deliver such feedback. This study combines these two aspects and explores the impact of an AR-based quantum cryptography experiment with integrated ChatGPT-based feedback on university students’ learning outcomes and cognitive processes. The study involved 21 groups (11 Group A; 10 Group B) of students in a physics laboratory course at a German university and used four open-ended questions to measure learning outcomes and gaze data as a learning process assessment. Statistical analysis was used to compare scores between feedback and non-feedback questions, and the effect of ChatGPT feedback on eye-tracking data was examined. The results show that ChatGPT feedback significantly improved learning outcomes and affected gaze data. While the feedback on conceptual questions tended to direct attention to the visualizations of the underlying model, the feedback on questions about experimental procedures increased visual attention to the real experimental materials. Overall, the results show that AI-based feedback draws visual attention towards task-relevant factors and increases learning performance in general.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00310-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00310-z","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum cryptography is a central topic in the quantum technology field that is particularly important for secure communication. The training of qualified experts in this field is necessary for continuous development. However, the abstract and complex nature of quantum physics makes the topic difficult to understand. Augmented reality (AR) allows otherwise invisible abstract concepts to be visualized and enables interactive learning, offering significant potential for improving quantum physics education in university lab courses. In addition, personalized feedback on challenging concepts can facilitate learning, and large language models (LLMs) like ChatGPT can effectively deliver such feedback. This study combines these two aspects and explores the impact of an AR-based quantum cryptography experiment with integrated ChatGPT-based feedback on university students’ learning outcomes and cognitive processes. The study involved 21 groups (11 Group A; 10 Group B) of students in a physics laboratory course at a German university and used four open-ended questions to measure learning outcomes and gaze data as a learning process assessment. Statistical analysis was used to compare scores between feedback and non-feedback questions, and the effect of ChatGPT feedback on eye-tracking data was examined. The results show that ChatGPT feedback significantly improved learning outcomes and affected gaze data. While the feedback on conceptual questions tended to direct attention to the visualizations of the underlying model, the feedback on questions about experimental procedures increased visual attention to the real experimental materials. Overall, the results show that AI-based feedback draws visual attention towards task-relevant factors and increases learning performance in general.

求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信