BadCodePrompt: backdoor attacks against prompt engineering of large language models for code generation

IF 2 2区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Yubin Qu, Song Huang, Yanzhou Li, Tongtong Bai, Xiang Chen, Xingya Wang, Long Li, Yongming Yao
{"title":"BadCodePrompt: backdoor attacks against prompt engineering of large language models for code generation","authors":"Yubin Qu,&nbsp;Song Huang,&nbsp;Yanzhou Li,&nbsp;Tongtong Bai,&nbsp;Xiang Chen,&nbsp;Xingya Wang,&nbsp;Long Li,&nbsp;Yongming Yao","doi":"10.1007/s10515-024-00485-2","DOIUrl":null,"url":null,"abstract":"<div><p>Using few-shot demonstrations in prompts significantly enhances the generation quality of large language models (LLMs), including code generation. However, adversarial examples injected by malicious service providers via few-shot prompting pose a risk of backdoor attacks in large language models. There is no research on backdoor attacks on large language models in the few-shot prompting setting for code generation tasks. In this paper, we propose <span>BadCodePrompt</span>, the first backdoor attack for code generation tasks targeting LLMS in the few-shot prompting scenario, without requiring access to training data or model parameters and with lower computational overhead. <span>BadCodePrompt</span> exploits the insertion of triggers and poisonous code patterns into examples, causing the output of poisonous source code when there is a backdoor trigger in the end user’s query prompt. We demonstrate the effectiveness of <span>BadCodePrompt</span> in conducting backdoor attacks on three LLMS (GPT-4, Claude-3.5-Sonnet, and Gemini Pro-1.5) in code generation tasks without affecting the functionality of the generated code. LLMs with stronger reasoning capabilities are also more vulnerable to <span>BadCodePrompt</span>, with an average attack success rate of up to 98.53% for GPT-4 in two benchmark tasks. Finally, we employ state-of-the-art defenses against backdoor attacks in Prompt Engineering and show their overall ineffectiveness against <span>BadCodePrompt</span>. Therefore, <span>BadCodePrompt</span> remains a serious threat to LLMS, underscoring the urgency of developing effective defense mechanisms.</p></div>","PeriodicalId":55414,"journal":{"name":"Automated Software Engineering","volume":"32 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10515-024-00485-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Using few-shot demonstrations in prompts significantly enhances the generation quality of large language models (LLMs), including code generation. However, adversarial examples injected by malicious service providers via few-shot prompting pose a risk of backdoor attacks in large language models. There is no research on backdoor attacks on large language models in the few-shot prompting setting for code generation tasks. In this paper, we propose BadCodePrompt, the first backdoor attack for code generation tasks targeting LLMS in the few-shot prompting scenario, without requiring access to training data or model parameters and with lower computational overhead. BadCodePrompt exploits the insertion of triggers and poisonous code patterns into examples, causing the output of poisonous source code when there is a backdoor trigger in the end user’s query prompt. We demonstrate the effectiveness of BadCodePrompt in conducting backdoor attacks on three LLMS (GPT-4, Claude-3.5-Sonnet, and Gemini Pro-1.5) in code generation tasks without affecting the functionality of the generated code. LLMs with stronger reasoning capabilities are also more vulnerable to BadCodePrompt, with an average attack success rate of up to 98.53% for GPT-4 in two benchmark tasks. Finally, we employ state-of-the-art defenses against backdoor attacks in Prompt Engineering and show their overall ineffectiveness against BadCodePrompt. Therefore, BadCodePrompt remains a serious threat to LLMS, underscoring the urgency of developing effective defense mechanisms.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Automated Software Engineering
Automated Software Engineering 工程技术-计算机:软件工程
CiteScore
4.80
自引率
11.80%
发文量
51
审稿时长
>12 weeks
期刊介绍: This journal details research, tutorial papers, survey and accounts of significant industrial experience in the foundations, techniques, tools and applications of automated software engineering technology. This includes the study of techniques for constructing, understanding, adapting, and modeling software artifacts and processes. Coverage in Automated Software Engineering examines both automatic systems and collaborative systems as well as computational models of human software engineering activities. In addition, it presents knowledge representations and artificial intelligence techniques applicable to automated software engineering, and formal techniques that support or provide theoretical foundations. The journal also includes reviews of books, software, conferences and workshops.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信