Annika S. Wiening, Jörn Bergendahl, Vicente Leyton-Ortega, Peter Nalbach
{"title":"Optimizing qubit control pulses for state preparation","authors":"Annika S. Wiening, Jörn Bergendahl, Vicente Leyton-Ortega, Peter Nalbach","doi":"10.1007/s11128-024-04613-5","DOIUrl":null,"url":null,"abstract":"<div><p>In the burgeoning field of quantum computing, the precise design and optimization of quantum pulses are essential for enhancing qubit operation fidelity. This study focuses on refining the pulse engineering techniques for superconducting qubits, employing a detailed analysis of <i>square</i> and <i>Gaussian</i> pulse envelopes under various approximation schemes. We evaluated the effects of coherent errors induced by naive pulse designs. We identified the sources of these errors in the Hamiltonian model’s approximation level. We mitigated these errors through adjustments to the external driving frequency and pulse durations, thus implementing a pulse scheme with stroboscopic error reduction. Our results demonstrate that these refined pulse strategies improve performance and reduce coherent errors. Moreover, the techniques developed herein are applicable across different quantum architectures, such as ion-trap, atomic, and photonic systems.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04613-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the burgeoning field of quantum computing, the precise design and optimization of quantum pulses are essential for enhancing qubit operation fidelity. This study focuses on refining the pulse engineering techniques for superconducting qubits, employing a detailed analysis of square and Gaussian pulse envelopes under various approximation schemes. We evaluated the effects of coherent errors induced by naive pulse designs. We identified the sources of these errors in the Hamiltonian model’s approximation level. We mitigated these errors through adjustments to the external driving frequency and pulse durations, thus implementing a pulse scheme with stroboscopic error reduction. Our results demonstrate that these refined pulse strategies improve performance and reduce coherent errors. Moreover, the techniques developed herein are applicable across different quantum architectures, such as ion-trap, atomic, and photonic systems.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.