Asymptotic integrability of nonlinear wave equations and the semiclassical limit of Lax pairs

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
A. M. Kamchatnov
{"title":"Asymptotic integrability of nonlinear wave equations and the semiclassical limit of Lax pairs","authors":"A. M. Kamchatnov","doi":"10.1134/S0040577925010015","DOIUrl":null,"url":null,"abstract":"<p> We introduce the concept of asymptotic integrability of nonlinear wave equations, which means the integrability of Hamilton equations describing the propagation of a high-frequency wave packet along a smooth profile whose dynamics obeys the dispersionless limit of the original equations. We show that this limit case of complete integrability allows expressing the semiclassical limit of Lax pairs in terms of the dispersion law for linear waves and an integral of the Hamilton equations for the packet. If the Lax pair does not depend on derivatives of the wave variables, then the semiclassical limit coincides with the exact expressions. We illustrate the theory with specific examples. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"222 1","pages":"1 - 9"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577925010015","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the concept of asymptotic integrability of nonlinear wave equations, which means the integrability of Hamilton equations describing the propagation of a high-frequency wave packet along a smooth profile whose dynamics obeys the dispersionless limit of the original equations. We show that this limit case of complete integrability allows expressing the semiclassical limit of Lax pairs in terms of the dispersion law for linear waves and an integral of the Hamilton equations for the packet. If the Lax pair does not depend on derivatives of the wave variables, then the semiclassical limit coincides with the exact expressions. We illustrate the theory with specific examples.

非线性波动方程的渐近可积性及Lax对的半经典极限
引入非线性波动方程的渐近可积性概念,即描述高频波包沿光滑剖面传播的Hamilton方程的可积性,该曲线的动力学服从原方程的无色散极限。我们证明了这种完全可积的极限情况允许用线性波的色散定律和包的Hamilton方程的积分来表示Lax对的半经典极限。如果Lax对不依赖于波动变量的导数,则半经典极限与精确表达式一致。我们用具体的例子来说明这个理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信