Heat transfer analysis of a fully wetted inclined moving fin with temperature-dependent internal heat generation using DTM-Pade approximant and machine learning algorithms

IF 2.1 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Pramana Pub Date : 2025-01-25 DOI:10.1007/s12043-024-02880-6
J Komathi, N Magesh, K Venkadeshwaran, K Chandan, R S Varun Kumar, Amal Abdulrahman
{"title":"Heat transfer analysis of a fully wetted inclined moving fin with temperature-dependent internal heat generation using DTM-Pade approximant and machine learning algorithms","authors":"J Komathi,&nbsp;N Magesh,&nbsp;K Venkadeshwaran,&nbsp;K Chandan,&nbsp;R S Varun Kumar,&nbsp;Amal Abdulrahman","doi":"10.1007/s12043-024-02880-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the thermal properties of a longitudinally inclined moving porous fin with varying internal heat generation. The approach takes into account the combined influence of natural convection, radiation, and the wet condition while modelling the fin’s energy equation. Using dimensionless terms, the governing energy balance equation is converted into an ordinary differential equation (ODE), which is then solved using the Differential transform method (DTM) and Pade approximant. The machine learning (ML) algorithms is also implemented for detecting temperature fluctuations in wetted fins. The ability of stacking ensemble ML model is employed to strengthen the reliability and accuracy of forecasts, which demonstratrates the improved regression predictions with absolute error rates ranging at 10<sup>−6</sup>. The coefficient of regression of 1 indicates the best fit for the data signifying efficient ML prediction. The graphical representations demonstrate how thermal factors influence temperature dispersion. The analysis reveals that the fin’s temperature rises with increasing ambient temperature, nondimensional internal heat generation, generation number, power exponent, and Peclet number. However, under these conditions the temperature gradient reduces. Furthermore, greater values of the convective, radiative, wet porous, and inclination angle parameters result in lower fin temperatures, which aids in cooling while increasing the temperature gradient.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"99 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-024-02880-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the thermal properties of a longitudinally inclined moving porous fin with varying internal heat generation. The approach takes into account the combined influence of natural convection, radiation, and the wet condition while modelling the fin’s energy equation. Using dimensionless terms, the governing energy balance equation is converted into an ordinary differential equation (ODE), which is then solved using the Differential transform method (DTM) and Pade approximant. The machine learning (ML) algorithms is also implemented for detecting temperature fluctuations in wetted fins. The ability of stacking ensemble ML model is employed to strengthen the reliability and accuracy of forecasts, which demonstratrates the improved regression predictions with absolute error rates ranging at 10−6. The coefficient of regression of 1 indicates the best fit for the data signifying efficient ML prediction. The graphical representations demonstrate how thermal factors influence temperature dispersion. The analysis reveals that the fin’s temperature rises with increasing ambient temperature, nondimensional internal heat generation, generation number, power exponent, and Peclet number. However, under these conditions the temperature gradient reduces. Furthermore, greater values of the convective, radiative, wet porous, and inclination angle parameters result in lower fin temperatures, which aids in cooling while increasing the temperature gradient.

利用dtm - page近似和机器学习算法分析具有温度依赖内部热生成的完全湿润倾斜移动鳍的传热
本文研究了纵向倾斜移动多孔翅片在不同内部产热条件下的热性能。该方法在模拟翅片能量方程时考虑了自然对流、辐射和潮湿条件的综合影响。利用无量纲项,将控制能量平衡方程转化为常微分方程(ODE),然后利用微分变换法(DTM)和Pade近似进行求解。机器学习(ML)算法也被用于检测湿翅的温度波动。利用堆叠集成ML模型的能力增强了预测的可靠性和准确性,证明了改进的回归预测,绝对错误率在10−6之间。回归系数为1表示数据的最佳拟合,表示有效的ML预测。图形表示演示了热因素如何影响温度分散。分析表明,翅片温度随环境温度、无量纲内发热量、发电量、功率指数和佩莱特数的增加而升高。然而,在这些条件下,温度梯度减小。此外,对流、辐射、湿多孔和倾角参数值越大,翅片温度越低,这有助于冷却,同时增加温度梯度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信