{"title":"Disagree and commit: degrees of argumentation-based agreements","authors":"Timotheus Kampik, Juan Carlos Nieves","doi":"10.1007/s10458-025-09688-7","DOIUrl":null,"url":null,"abstract":"<div><p>In cooperative human decision-making, agreements are often not total; a partial degree of agreement is sufficient to commit to a decision and move on, as long as one is somewhat confident that the involved parties are likely to stand by their commitment in the future, given no drastic unexpected changes. In this paper, we introduce the notion of <i>agreement scenarios</i> that allow artificial autonomous agents to reach such agreements, using formal models of argumentation, in particular abstract argumentation and value-based argumentation. We introduce the notions of degrees of satisfaction and (minimum, mean, and median) agreement, as well as a measure of the impact a value in a value-based argumentation framework has on these notions. We then analyze how degrees of agreement are affected when agreement scenarios are expanded with new information, to shed light on the reliability of partial agreements in dynamic scenarios. An implementation of the introduced concepts is provided as part of an argumentation-based reasoning software library.</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"39 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10458-025-09688-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-025-09688-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In cooperative human decision-making, agreements are often not total; a partial degree of agreement is sufficient to commit to a decision and move on, as long as one is somewhat confident that the involved parties are likely to stand by their commitment in the future, given no drastic unexpected changes. In this paper, we introduce the notion of agreement scenarios that allow artificial autonomous agents to reach such agreements, using formal models of argumentation, in particular abstract argumentation and value-based argumentation. We introduce the notions of degrees of satisfaction and (minimum, mean, and median) agreement, as well as a measure of the impact a value in a value-based argumentation framework has on these notions. We then analyze how degrees of agreement are affected when agreement scenarios are expanded with new information, to shed light on the reliability of partial agreements in dynamic scenarios. An implementation of the introduced concepts is provided as part of an argumentation-based reasoning software library.
期刊介绍:
This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to:
Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent)
Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination
Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory
Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing
Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation
Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages
Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation
Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms
Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting
Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning.
Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems.
Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness
Significant, novel applications of agent technology
Comprehensive reviews and authoritative tutorials of research and practice in agent systems
Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.