Yu-Guang Yang, Shi Qiu, Yue-Chao Wang, Guang-Bao Xu, Dong-Huan Jiang
{"title":"A novel lottery protocol based on quantum blockchain","authors":"Yu-Guang Yang, Shi Qiu, Yue-Chao Wang, Guang-Bao Xu, Dong-Huan Jiang","doi":"10.1007/s11128-025-04657-1","DOIUrl":null,"url":null,"abstract":"<div><p>The lottery business is a form of gambling activity operated by authority agencies. Due to the substantial economic interests, its security and fairness become the core elements of industry development. To maintain the trust of participants and ensure fair competition, blockchain technology has been widely applied in the lottery field due to the characteristics of decentralization, transparency, and immutability. However, with the rapid advancement of quantum computing, the security of traditional blockchain technology is challenged largely. To tackle this issue, a novel consensus mechanism which can resist quantum attacks is first proposed, based on a self-tallying quantum voting protocol. Then, a quantum circuit is designed, which can encode <i>n</i>-bit binary information into the relative phase of a quantum state and entangle the blocks by means of controlled-Z (CZ) gate, forming a quantum blockchain structure with timestamps. Finally, utilizing the designed quantum blockchain, a new type of lottery protocol is constructed. The proposed protocol meets the requirements of decentralization, unforgeability, verifiability, and quantum attack resistance. Compared to existing lottery protocols, it can support an arbitrary number of players, and only one communication is required for the ticket purchase process of each player, making it suitable for most of lottery game scenarios.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04657-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The lottery business is a form of gambling activity operated by authority agencies. Due to the substantial economic interests, its security and fairness become the core elements of industry development. To maintain the trust of participants and ensure fair competition, blockchain technology has been widely applied in the lottery field due to the characteristics of decentralization, transparency, and immutability. However, with the rapid advancement of quantum computing, the security of traditional blockchain technology is challenged largely. To tackle this issue, a novel consensus mechanism which can resist quantum attacks is first proposed, based on a self-tallying quantum voting protocol. Then, a quantum circuit is designed, which can encode n-bit binary information into the relative phase of a quantum state and entangle the blocks by means of controlled-Z (CZ) gate, forming a quantum blockchain structure with timestamps. Finally, utilizing the designed quantum blockchain, a new type of lottery protocol is constructed. The proposed protocol meets the requirements of decentralization, unforgeability, verifiability, and quantum attack resistance. Compared to existing lottery protocols, it can support an arbitrary number of players, and only one communication is required for the ticket purchase process of each player, making it suitable for most of lottery game scenarios.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.