Research on Ultrasonic Synchronous Detection Method for Material Residual Stress and Thickness

IF 0.9 4区 材料科学 Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Zhao Wentong, Zhou Bing, Bai Wenrui, Wang Zhanyong
{"title":"Research on Ultrasonic Synchronous Detection Method for Material Residual Stress and Thickness","authors":"Zhao Wentong,&nbsp;Zhou Bing,&nbsp;Bai Wenrui,&nbsp;Wang Zhanyong","doi":"10.1134/S106183092460237X","DOIUrl":null,"url":null,"abstract":"<p>Being limited to the different transmission and reception modes and detection signals of the critical refracted longitudinal wave method for stress measurement and the perpendicular incident echo method for thickness measurement, it is necessary to use different probes and equipments when simultaneously measuring stress and thickness. For this difficulty, the acquisition frequency and the number of bits are taken as the research object to realize the optimization of the echo signal. By combining FEM simulations with Comsol software with experimental research, the effects of probe incidence angle, probe spacing, and temperature on ultrasonic waves are investigated, and the relationship between probe spacing and the stress coefficient of measured component (<i>K</i>) is analyzed. A novel ultrasonic synchronous detection method for residual stress and thickness is proposed. This method is based on an integrated transmit-receive probe with oblique incidence, utilizing critical refracted longitudinal wave (LCR wave) for stress detection and synchronously generated transverse waves for thickness measurement. For the first time, a formula for ultrasonic thickness measurement based on inclined incidence is derived. Using self-developed equipment, ultrasonic testing experiments on step test block and cantilever beam loading device were conducted to verify the accuracy and precision of the proposed synchronous detection method for stress and thickness. This method has significant application prospects in the inspection or online monitoring of pressure vessels concerned with fatigue and corrosion performance.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":"60 11","pages":"1221 - 1235"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Nondestructive Testing","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S106183092460237X","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Being limited to the different transmission and reception modes and detection signals of the critical refracted longitudinal wave method for stress measurement and the perpendicular incident echo method for thickness measurement, it is necessary to use different probes and equipments when simultaneously measuring stress and thickness. For this difficulty, the acquisition frequency and the number of bits are taken as the research object to realize the optimization of the echo signal. By combining FEM simulations with Comsol software with experimental research, the effects of probe incidence angle, probe spacing, and temperature on ultrasonic waves are investigated, and the relationship between probe spacing and the stress coefficient of measured component (K) is analyzed. A novel ultrasonic synchronous detection method for residual stress and thickness is proposed. This method is based on an integrated transmit-receive probe with oblique incidence, utilizing critical refracted longitudinal wave (LCR wave) for stress detection and synchronously generated transverse waves for thickness measurement. For the first time, a formula for ultrasonic thickness measurement based on inclined incidence is derived. Using self-developed equipment, ultrasonic testing experiments on step test block and cantilever beam loading device were conducted to verify the accuracy and precision of the proposed synchronous detection method for stress and thickness. This method has significant application prospects in the inspection or online monitoring of pressure vessels concerned with fatigue and corrosion performance.

Abstract Image

材料残余应力和厚度的超声同步检测方法研究
受临界折射纵波法测应力和垂直入射回波法测厚的发射接收方式和探测信号不同的限制,同时测量应力和厚度需要使用不同的探头和设备。针对这一难点,以采集频率和比特数为研究对象,实现回波信号的优化。通过Comsol软件的有限元模拟与实验研究相结合,研究了探头入射角、探头间距和温度对超声波的影响,并分析了探头间距与被测部件应力系数K的关系。提出了一种新的残余应力和厚度超声同步检测方法。该方法基于斜入射集成收发探头,利用临界折射纵波(LCR波)进行应力检测,同步产生横波进行厚度测量。首次推导了基于倾斜入射的超声测厚公式。利用自行研制的设备,对台阶试验块和悬臂梁加载装置进行了超声检测实验,验证了所提出的应力与厚度同步检测方法的准确性和精密度。该方法在涉及疲劳和腐蚀性能的压力容器的检测或在线监测中具有重要的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Nondestructive Testing
Russian Journal of Nondestructive Testing 工程技术-材料科学:表征与测试
CiteScore
1.60
自引率
44.40%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Russian Journal of Nondestructive Testing, a translation of Defectoskopiya, is a publication of the Russian Academy of Sciences. This publication offers current Russian research on the theory and technology of nondestructive testing of materials and components. It describes laboratory and industrial investigations of devices and instrumentation and provides reviews of new equipment developed for series manufacture. Articles cover all physical methods of nondestructive testing, including magnetic and electrical; ultrasonic; X-ray and Y-ray; capillary; liquid (color luminescence), and radio (for materials of low conductivity).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信