E. V. Glushkov, N. V. Glushkova, A. A. Tatarkin, O. A. Ermolenko
{"title":"Modeling of Reflected Ultrasonic Fields in Composed Samples","authors":"E. V. Glushkov, N. V. Glushkova, A. A. Tatarkin, O. A. Ermolenko","doi":"10.1134/S1061830924602745","DOIUrl":null,"url":null,"abstract":"<p>Ultrasonic nondestructive testing involves the study of propagation, reflection and refraction patterns of elastic waves excited by contact or noncontact piezoelectric transducers in the inspected object. The finite element modeling usually requires high computational costs and additional postprocessing to select individual waves from the total solution. When probing joints of homogeneous materials, such as turbine blades made of heat-resistant monocrystalline alloys, the joint boundary is low-contrast, and the reflected signals are relatively weak. This causes additional difficulties for their separation from the total wave field and correct interpretation of the information they bring. To solve this problem, explicit asymptotic representations for reflected and transmitted waves in a two-layer elastic half-space with a surface source are proposed in the present work, which allow fast parametric analysis. They can be used to analyze ultrasonic probing data, for example, to estimate the state of the junction zone or to determine the mutual orientation of the crystals’ principal axes.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":"60 11","pages":"1195 - 1205"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Nondestructive Testing","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1061830924602745","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrasonic nondestructive testing involves the study of propagation, reflection and refraction patterns of elastic waves excited by contact or noncontact piezoelectric transducers in the inspected object. The finite element modeling usually requires high computational costs and additional postprocessing to select individual waves from the total solution. When probing joints of homogeneous materials, such as turbine blades made of heat-resistant monocrystalline alloys, the joint boundary is low-contrast, and the reflected signals are relatively weak. This causes additional difficulties for their separation from the total wave field and correct interpretation of the information they bring. To solve this problem, explicit asymptotic representations for reflected and transmitted waves in a two-layer elastic half-space with a surface source are proposed in the present work, which allow fast parametric analysis. They can be used to analyze ultrasonic probing data, for example, to estimate the state of the junction zone or to determine the mutual orientation of the crystals’ principal axes.
期刊介绍:
Russian Journal of Nondestructive Testing, a translation of Defectoskopiya, is a publication of the Russian Academy of Sciences. This publication offers current Russian research on the theory and technology of nondestructive testing of materials and components. It describes laboratory and industrial investigations of devices and instrumentation and provides reviews of new equipment developed for series manufacture. Articles cover all physical methods of nondestructive testing, including magnetic and electrical; ultrasonic; X-ray and Y-ray; capillary; liquid (color luminescence), and radio (for materials of low conductivity).