Jie Fang, Mingwen Lu, Lina Fu, Juanmeizi Wang, Mengyun Xu
{"title":"Freeway optimal control based on emission oriented microscopic graph convolutional neural network","authors":"Jie Fang, Mingwen Lu, Lina Fu, Juanmeizi Wang, Mengyun Xu","doi":"10.1007/s10489-024-06143-0","DOIUrl":null,"url":null,"abstract":"<div><p>Traffic flow prediction and control in the active traffic control system is considered as one of the most critical issues in Intelligent Transportation Systems (ITS). Among the proposed AI-based approaches, Deep Learning (DL) has been largely applied while showing better performances. This research improves macroscopic traffic flow model METANET by establishing a graph convolution neural network (GCN) to explicitly and more precisely incorporate microscopic traffic flow dynamics. The microscopic emission model utilizes the feature extraction function of GCN to reduce the complexity of measuring the environmental profits for the whole traffic network. By introducing the GCN model to facilitate the aggregation of vehicle information, the proposed framework reduces the computational burden and obtains better optimization performance. The designed algorithms are tested on a microscopic simulation platform based on field data. The results demonstrate that the proposed control method produce a more robust and smooth traffic flow environment, which leads to improved traffic efficiency and overall carbon emissions of the road network.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06143-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Traffic flow prediction and control in the active traffic control system is considered as one of the most critical issues in Intelligent Transportation Systems (ITS). Among the proposed AI-based approaches, Deep Learning (DL) has been largely applied while showing better performances. This research improves macroscopic traffic flow model METANET by establishing a graph convolution neural network (GCN) to explicitly and more precisely incorporate microscopic traffic flow dynamics. The microscopic emission model utilizes the feature extraction function of GCN to reduce the complexity of measuring the environmental profits for the whole traffic network. By introducing the GCN model to facilitate the aggregation of vehicle information, the proposed framework reduces the computational burden and obtains better optimization performance. The designed algorithms are tested on a microscopic simulation platform based on field data. The results demonstrate that the proposed control method produce a more robust and smooth traffic flow environment, which leads to improved traffic efficiency and overall carbon emissions of the road network.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.