Analysis of converting \(\mathfrak{C^{0}}\)-circuit into \(\mathfrak{C^{*}}\)-circuit

IF 5.8 2区 物理与天体物理 Q1 OPTICS
Qing-bin Luo, Lang Ding, Guo-wu Yang, Xiao-yu Li
{"title":"Analysis of converting \\(\\mathfrak{C^{0}}\\)-circuit into \\(\\mathfrak{C^{*}}\\)-circuit","authors":"Qing-bin Luo,&nbsp;Lang Ding,&nbsp;Guo-wu Yang,&nbsp;Xiao-yu Li","doi":"10.1140/epjqt/s40507-025-00317-6","DOIUrl":null,"url":null,"abstract":"<div><p>A <span>\\(\\mathfrak{C^{*}}\\)</span>-circuit, which was proposed in Asiacypt 2022 by Huang and Sun (Advances in cryptology – ASIACRYPT 2022, pp. 614–644, 2022), can directly perform calculations with the existing quantum states, thereby reducing the use of quantum resources in quantum logic synthesis. We theoretically prove how to convert a <span>\\(\\mathfrak{C^{0}}\\)</span>-circuit into the corresponding <span>\\(\\mathfrak{C^{*}}\\)</span>-circuit through two lemmas and one theorem. The first lemma proves the interchangeability of CNOT gates and NOT gates by using the equivalence of quantum circuits. The second lemma proves that adding CNOT gates to the front of a quantum circuit whose initial states are all <span>\\(|0\\rangle \\)</span>s will not change the output states of the circuit. The theorem is used to describe what kind of <span>\\(\\mathfrak{C^{0}}\\)</span>-circuit can be transformed into <span>\\(\\mathfrak{C^{*}}\\)</span>-circuit, and the correctness of this transformation is proved. Our work will provide a theoretical basis for converting <span>\\(\\mathfrak{C^{0}}\\)</span>-circuit to <span>\\(\\mathfrak{C^{*}}\\)</span>-circuit. Then applying the theoretical analysis results to the multiplication over <span>\\(\\text{GF}(2^{8})\\)</span>, the constructed quantum circuit needs 27 Toffoli gates and 118 CNOT gates, which is 15 fewer Toffoli gates and 43 CNOT gates than the current best result. This shows that the method of constructing quantum circuits by using the conversion of <span>\\(\\mathfrak{C^{0}}\\)</span>-circuit to <span>\\(\\mathfrak{C^{*}}\\)</span>-circuit is very efficient.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00317-6","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00317-6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

A \(\mathfrak{C^{*}}\)-circuit, which was proposed in Asiacypt 2022 by Huang and Sun (Advances in cryptology – ASIACRYPT 2022, pp. 614–644, 2022), can directly perform calculations with the existing quantum states, thereby reducing the use of quantum resources in quantum logic synthesis. We theoretically prove how to convert a \(\mathfrak{C^{0}}\)-circuit into the corresponding \(\mathfrak{C^{*}}\)-circuit through two lemmas and one theorem. The first lemma proves the interchangeability of CNOT gates and NOT gates by using the equivalence of quantum circuits. The second lemma proves that adding CNOT gates to the front of a quantum circuit whose initial states are all \(|0\rangle \)s will not change the output states of the circuit. The theorem is used to describe what kind of \(\mathfrak{C^{0}}\)-circuit can be transformed into \(\mathfrak{C^{*}}\)-circuit, and the correctness of this transformation is proved. Our work will provide a theoretical basis for converting \(\mathfrak{C^{0}}\)-circuit to \(\mathfrak{C^{*}}\)-circuit. Then applying the theoretical analysis results to the multiplication over \(\text{GF}(2^{8})\), the constructed quantum circuit needs 27 Toffoli gates and 118 CNOT gates, which is 15 fewer Toffoli gates and 43 CNOT gates than the current best result. This shows that the method of constructing quantum circuits by using the conversion of \(\mathfrak{C^{0}}\)-circuit to \(\mathfrak{C^{*}}\)-circuit is very efficient.

\(\mathfrak{C^{0}}\) -电路转换为\(\mathfrak{C^{*}}\) -电路的分析
由Huang和Sun在ASIACRYPT 2022上提出的\(\mathfrak{C^{*}}\) -电路(Advances in cryptology - ASIACRYPT 2022, pp. 614-644, 2022)可以直接使用现有的量子态进行计算,从而减少了量子逻辑合成中量子资源的使用。通过两个引理和一个定理,从理论上证明了如何将一个\(\mathfrak{C^{0}}\) -电路转化为相应的\(\mathfrak{C^{*}}\) -电路。第一个引理利用量子电路的等效性证明了CNOT门与非门的互换性。第二个引理证明,在初始状态均为\(|0\rangle \) s的量子电路前面添加CNOT门不会改变电路的输出状态。利用该定理描述了什么样的\(\mathfrak{C^{0}}\) -电路可以转化为\(\mathfrak{C^{*}}\) -电路,并证明了这种转化的正确性。我们的工作将为将\(\mathfrak{C^{0}}\) -circuit转换为\(\mathfrak{C^{*}}\) -circuit提供理论基础。然后将理论分析结果应用于\(\text{GF}(2^{8})\)上的乘法运算,所构建的量子电路需要27个Toffoli门和118个CNOT门,比目前的最佳结果减少了15个Toffoli门和43个CNOT门。这表明利用\(\mathfrak{C^{0}}\) -电路到\(\mathfrak{C^{*}}\) -电路的转换构造量子电路的方法是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信