SDSS-IV MaNGA: the environmental effects on some fundamental properties of early-type galaxies

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
E. Abdellah, R. M. Samir, Z. Awad, M. Y. Amin
{"title":"SDSS-IV MaNGA: the environmental effects on some fundamental properties of early-type galaxies","authors":"E. Abdellah,&nbsp;R. M. Samir,&nbsp;Z. Awad,&nbsp;M. Y. Amin","doi":"10.1007/s10509-025-04396-w","DOIUrl":null,"url":null,"abstract":"<div><p>We studied the dependence of selected structural and kinematic properties of early-type galaxies (ETGs) on their environments. The selected sample, extracted from the SDSS-DR17 MaNGA survey, consists of 946 ETGs in clusters (cETGs) and 288 isolated ETGs (iETGs) within a spectroscopic redshift <span>\\(z\\leq 0.15\\)</span>. We investigated the distribution of these galaxies in the Fundamental Plane (FP), Kormendy Relation (KR), Faber-Jackson Relation (FJR) and the Mass-Size Relation (MSR). We found that massive galaxies, whose stellar masses <span>\\(M_{*}&gt; 10^{11}M_{\\odot }\\)</span>, are predominantly elliptical (<span>\\(&gt;65\\%\\)</span>). The analysis of the four scaling relations showed that the effect of the host environment is negligible for massive (<span>\\(M_{*}&gt;10^{11.5}M_{\\odot }\\)</span>) ETGs, most likely because of their passive evolution through dry mergers and/or stellar aging. On the other hand, low-mass ETGs are influenced by their environment, where iETGs with <span>\\(M_{*}&lt;10^{10}M_{\\odot }\\)</span> and velocity dispersion <span>\\(\\sigma _{0}\\leq 100\\)</span> km/sec are <span>\\(25\\%\\)</span> more luminous and <span>\\(11.5\\%\\)</span> larger than cETGs. Low-mass cETGs may have suffered processes that removed their gas content and hence quenched star formation while low-mass iETGs may have experienced a recent wet merger that triggered star formation and led to their, currently, observed low mass-to-light ratio. However, further spectral analysis is needed to confirm these findings.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"370 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-025-04396-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We studied the dependence of selected structural and kinematic properties of early-type galaxies (ETGs) on their environments. The selected sample, extracted from the SDSS-DR17 MaNGA survey, consists of 946 ETGs in clusters (cETGs) and 288 isolated ETGs (iETGs) within a spectroscopic redshift \(z\leq 0.15\). We investigated the distribution of these galaxies in the Fundamental Plane (FP), Kormendy Relation (KR), Faber-Jackson Relation (FJR) and the Mass-Size Relation (MSR). We found that massive galaxies, whose stellar masses \(M_{*}> 10^{11}M_{\odot }\), are predominantly elliptical (\(>65\%\)). The analysis of the four scaling relations showed that the effect of the host environment is negligible for massive (\(M_{*}>10^{11.5}M_{\odot }\)) ETGs, most likely because of their passive evolution through dry mergers and/or stellar aging. On the other hand, low-mass ETGs are influenced by their environment, where iETGs with \(M_{*}<10^{10}M_{\odot }\) and velocity dispersion \(\sigma _{0}\leq 100\) km/sec are \(25\%\) more luminous and \(11.5\%\) larger than cETGs. Low-mass cETGs may have suffered processes that removed their gas content and hence quenched star formation while low-mass iETGs may have experienced a recent wet merger that triggered star formation and led to their, currently, observed low mass-to-light ratio. However, further spectral analysis is needed to confirm these findings.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Astrophysics and Space Science
Astrophysics and Space Science 地学天文-天文与天体物理
CiteScore
3.40
自引率
5.30%
发文量
106
审稿时长
2-4 weeks
期刊介绍: Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered. The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing. Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信