Endpoint regularity of general Fourier integral operators

IF 1.4 3区 数学 Q1 MATHEMATICS
Wenjuan Li, Xiangrong Zhu
{"title":"Endpoint regularity of general Fourier integral operators","authors":"Wenjuan Li,&nbsp;Xiangrong Zhu","doi":"10.1007/s13324-025-01013-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(n\\ge 1,0&lt;\\rho &lt;1, \\max \\{\\rho ,1-\\rho \\}\\le \\delta \\le 1\\)</span> and </p><div><div><span>$$\\begin{aligned} m_1=\\rho -n+(n-1)\\min \\{\\frac{1}{2},\\rho \\}+\\frac{1-\\delta }{2}. \\end{aligned}$$</span></div></div><p>If the amplitude <i>a</i> belongs to the Hörmander class <span>\\(S^{m_1}_{\\rho ,\\delta }\\)</span> and <span>\\(\\phi \\in \\Phi ^{2}\\)</span> satisfies the strong non-degeneracy condition, then we prove that the following Fourier integral operator <span>\\(T_{\\phi ,a}\\)</span> defined by </p><div><div><span>$$\\begin{aligned} T_{\\phi ,a}f(x)=\\int _{{\\mathbb {R}}^{n}}e^{i\\phi (x,\\xi )}a(x,\\xi ){\\widehat{f}}(\\xi )d\\xi , \\end{aligned}$$</span></div></div><p>is bounded from the local Hardy space <span>\\(h^1({\\mathbb {R}}^n)\\)</span> to <span>\\(L^1({\\mathbb {R}}^n)\\)</span>. As a corollary, we can also obtain the corresponding <span>\\(L^p({\\mathbb {R}}^n)\\)</span>-boundedness when <span>\\(1&lt;p&lt;2\\)</span>. These theorems are rigorous improvements on the recent works of Staubach and his collaborators. When <span>\\(0\\le \\rho \\le 1,\\delta \\le \\max \\{\\rho ,1-\\rho \\}\\)</span>, by using some similar techniques in this note, we can get the corresponding theorems which coincide with the known results.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01013-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(n\ge 1,0<\rho <1, \max \{\rho ,1-\rho \}\le \delta \le 1\) and

$$\begin{aligned} m_1=\rho -n+(n-1)\min \{\frac{1}{2},\rho \}+\frac{1-\delta }{2}. \end{aligned}$$

If the amplitude a belongs to the Hörmander class \(S^{m_1}_{\rho ,\delta }\) and \(\phi \in \Phi ^{2}\) satisfies the strong non-degeneracy condition, then we prove that the following Fourier integral operator \(T_{\phi ,a}\) defined by

$$\begin{aligned} T_{\phi ,a}f(x)=\int _{{\mathbb {R}}^{n}}e^{i\phi (x,\xi )}a(x,\xi ){\widehat{f}}(\xi )d\xi , \end{aligned}$$

is bounded from the local Hardy space \(h^1({\mathbb {R}}^n)\) to \(L^1({\mathbb {R}}^n)\). As a corollary, we can also obtain the corresponding \(L^p({\mathbb {R}}^n)\)-boundedness when \(1<p<2\). These theorems are rigorous improvements on the recent works of Staubach and his collaborators. When \(0\le \rho \le 1,\delta \le \max \{\rho ,1-\rho \}\), by using some similar techniques in this note, we can get the corresponding theorems which coincide with the known results.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信