Comprehensive Weight Decomposition Analysis of Modern Parameter-Efficient Methods

IF 1 Q4 OPTICS
A. V. Demidovskij, I. G. Salnikov, A. M. Tugaryov, A. I. Trutnev, I. A. Novikova
{"title":"Comprehensive Weight Decomposition Analysis of Modern Parameter-Efficient Methods","authors":"A. V. Demidovskij,&nbsp;I. G. Salnikov,&nbsp;A. M. Tugaryov,&nbsp;A. I. Trutnev,&nbsp;I. A. Novikova","doi":"10.3103/S1060992X24700796","DOIUrl":null,"url":null,"abstract":"<p>Large Language Models fine-tuning is an essential part of modern artificial intelligent systems that solve numerous tasks, such as natural language processing and computer vision. Among the various fine-tuning strategies, the most prominent approach for Large Language Model fine-tuning is Parameter-Efficient Fine-Tuning (PEFT), as it allows to achieve state-of-the-art performance on multiple tasks while minimizing computational resources and training time. Recently, an increasing number of PEFT methodologies have been developed, each asserting superiority based on performance metrics. However, a critical evaluation of how these methods align with the tuning dynamic of the full fine-tuning (FT) remains largely unexplored. This study focuses on bridging this gap by analyzing the learning behavior of such PEFT approaches as LoRA, LoRA+, AdaLoRA, DoRA, VeRA, PiSSA, LoKr and LoHa in comparison to FT. This work provides a comprehensive comparative analysis aimed at identifying which PEFT methods diverge significantly in weights update dynamic from the FT standard. The findings reveal insights into the underlying causes of these discrepancies, offering a deeper understanding of each method’s behavior and efficacy.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"33 3 supplement","pages":"S513 - S522"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X24700796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Large Language Models fine-tuning is an essential part of modern artificial intelligent systems that solve numerous tasks, such as natural language processing and computer vision. Among the various fine-tuning strategies, the most prominent approach for Large Language Model fine-tuning is Parameter-Efficient Fine-Tuning (PEFT), as it allows to achieve state-of-the-art performance on multiple tasks while minimizing computational resources and training time. Recently, an increasing number of PEFT methodologies have been developed, each asserting superiority based on performance metrics. However, a critical evaluation of how these methods align with the tuning dynamic of the full fine-tuning (FT) remains largely unexplored. This study focuses on bridging this gap by analyzing the learning behavior of such PEFT approaches as LoRA, LoRA+, AdaLoRA, DoRA, VeRA, PiSSA, LoKr and LoHa in comparison to FT. This work provides a comprehensive comparative analysis aimed at identifying which PEFT methods diverge significantly in weights update dynamic from the FT standard. The findings reveal insights into the underlying causes of these discrepancies, offering a deeper understanding of each method’s behavior and efficacy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
25
期刊介绍: The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信