{"title":"Room-level localization method in industrial workshops using LiDAR-based point cloud registration and object recognition","authors":"Yunzhi Li, Libin Tan, Xiangrong Xu, Zequn Zhang","doi":"10.1007/s10489-025-06244-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we aim to achieve room-level localization for mobile robots in industrial workshops. It is difficult to obtain precise localization information via common methods because of the complexity of the industrial environment. Our findings show that precise room-level localization can be achieved via LiDAR-based point cloud registration and object recognition. For this purpose, we formulate room-level localization as a classification problem. Registration and object recognition are used to extract features from point clouds. After the data enhancement algorithm, called Stacked Auto Encoder is employed to overcome the issue of limited feature data, the neural network algorithm is leveraged to address the classification problem. To this end, we collected point cloud data from industrial workshops and performed experimental validation. We evaluated the recognition performance of the algorithm in a metallurgical workshop and achieved good accuracy.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06244-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we aim to achieve room-level localization for mobile robots in industrial workshops. It is difficult to obtain precise localization information via common methods because of the complexity of the industrial environment. Our findings show that precise room-level localization can be achieved via LiDAR-based point cloud registration and object recognition. For this purpose, we formulate room-level localization as a classification problem. Registration and object recognition are used to extract features from point clouds. After the data enhancement algorithm, called Stacked Auto Encoder is employed to overcome the issue of limited feature data, the neural network algorithm is leveraged to address the classification problem. To this end, we collected point cloud data from industrial workshops and performed experimental validation. We evaluated the recognition performance of the algorithm in a metallurgical workshop and achieved good accuracy.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.