Solution of an Inverse Problem of Optical Spectroscopy Using Kolmogorov-Arnold Networks

IF 1 Q4 OPTICS
G. Kupriyanov, I. Isaev, K. Laptinskiy, T. Dolenko, S. Dolenko
{"title":"Solution of an Inverse Problem of Optical Spectroscopy Using Kolmogorov-Arnold Networks","authors":"G. Kupriyanov,&nbsp;I. Isaev,&nbsp;K. Laptinskiy,&nbsp;T. Dolenko,&nbsp;S. Dolenko","doi":"10.3103/S1060992X24700747","DOIUrl":null,"url":null,"abstract":"<p>Kolmogorov-Arnold Networks (KAN), introduced in May 2024, are a novel type of artificial neural networks, whose abilities and properties are now being actively investigated by the machine learning community. In this study, we test application of KAN to solve an inverse problem for development of multimodal carbon luminescent nanosensors of ions dissolved in water, including heavy metal cations. We compare the results of solving this problem with four various machine learning methods—random forest, gradient boosting over decision trees, multi-layer perceptron neural networks, and KAN. Advantages and disadvantages of KAN are discussed, and it is demonstrated that KAN has high chance to become one of the algorithms most recommended for use in solving highly non-linear regression problems with moderate number of input features.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"33 3 supplement","pages":"S475 - S482"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X24700747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Kolmogorov-Arnold Networks (KAN), introduced in May 2024, are a novel type of artificial neural networks, whose abilities and properties are now being actively investigated by the machine learning community. In this study, we test application of KAN to solve an inverse problem for development of multimodal carbon luminescent nanosensors of ions dissolved in water, including heavy metal cations. We compare the results of solving this problem with four various machine learning methods—random forest, gradient boosting over decision trees, multi-layer perceptron neural networks, and KAN. Advantages and disadvantages of KAN are discussed, and it is demonstrated that KAN has high chance to become one of the algorithms most recommended for use in solving highly non-linear regression problems with moderate number of input features.

Abstract Image

利用Kolmogorov-Arnold网络求解光谱学反演问题
Kolmogorov-Arnold网络(KAN)于2024年5月推出,是一种新型的人工神经网络,其能力和特性正在被机器学习社区积极研究。在这项研究中,我们测试了KAN的应用,以解决多模态碳发光纳米传感器在水中溶解离子(包括重金属阳离子)开发中的逆问题。我们用四种不同的机器学习方法——随机森林、决策树上的梯度增强、多层感知器神经网络和KAN——来比较解决这个问题的结果。讨论了KAN的优点和缺点,并证明KAN很有可能成为解决具有中等数量输入特征的高度非线性回归问题的最推荐算法之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
25
期刊介绍: The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信