Danhui Han, Chong Peng, Guangtong Zhou, Bingtao Hu
{"title":"Rapid synthesis of Nanodiamond/rGO Composites by Utilizing the Explosive Characteristics of Graphene Oxide","authors":"Danhui Han, Chong Peng, Guangtong Zhou, Bingtao Hu","doi":"10.3103/S1063457624060030","DOIUrl":null,"url":null,"abstract":"<p>Nanodiamond particles and graphene oxide (GO) powders were used as raw materials to construct nanodiamond/reduced GO (rGO) composites by utilizing the explosive reaction of GO. The XRD, FTIR, and XPS results indicate that rapid heating can induce explosive reactions in GO. GO was rapidly reduced to graphene by this explosive reaction. The SEM results indicate that GO undergone obvious expansion and peeling, and the nanodiamond particles were fully loaded onto the rGO sheets.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"46 6","pages":"496 - 498"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superhard Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1063457624060030","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanodiamond particles and graphene oxide (GO) powders were used as raw materials to construct nanodiamond/reduced GO (rGO) composites by utilizing the explosive reaction of GO. The XRD, FTIR, and XPS results indicate that rapid heating can induce explosive reactions in GO. GO was rapidly reduced to graphene by this explosive reaction. The SEM results indicate that GO undergone obvious expansion and peeling, and the nanodiamond particles were fully loaded onto the rGO sheets.
期刊介绍:
Journal of Superhard Materials presents up-to-date results of basic and applied research on production, properties, and applications of superhard materials and related tools. It publishes the results of fundamental research on physicochemical processes of forming and growth of single-crystal, polycrystalline, and dispersed materials, diamond and diamond-like films; developments of methods for spontaneous and controlled synthesis of superhard materials and methods for static, explosive and epitaxial synthesis. The focus of the journal is large single crystals of synthetic diamonds; elite grinding powders and micron powders of synthetic diamonds and cubic boron nitride; polycrystalline and composite superhard materials based on diamond and cubic boron nitride; diamond and carbide tools for highly efficient metal-working, boring, stone-working, coal mining and geological exploration; articles of ceramic; polishing pastes for high-precision optics; precision lathes for diamond turning; technologies of precise machining of metals, glass, and ceramics. The journal covers all fundamental and technological aspects of synthesis, characterization, properties, devices and applications of these materials. The journal welcomes manuscripts from all countries in the English language.