Machine-learning based photon counting for PMT waveforms and its application to the improvement of the energy resolution in large liquid scintillator detectors

IF 4.8 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Wei Jiang, Guihong Huang, Zhen Liu, Wuming Luo, Liangjian Wen, Jianyi Luo
{"title":"Machine-learning based photon counting for PMT waveforms and its application to the improvement of the energy resolution in large liquid scintillator detectors","authors":"Wei Jiang,&nbsp;Guihong Huang,&nbsp;Zhen Liu,&nbsp;Wuming Luo,&nbsp;Liangjian Wen,&nbsp;Jianyi Luo","doi":"10.1140/epjc/s10052-024-13724-3","DOIUrl":null,"url":null,"abstract":"<div><p>Photomultiplier tubes (PMTs) are widely used in particle experiments for photon detection. PMT waveform analysis is crucial for high-precision measurements of the position and energy of incident particles in liquid scintillator (LS) detectors. A key factor contributing to the energy resolution in large liquid scintillator detectors with PMTs is the charge smearing of PMTs. This paper presents a machine-learning-based photon counting method for PMT waveforms and its application to the energy reconstruction, using the JUNO experiment as an example. The results indicate that leveraging the photon counting information from the machine learning model can partially mitigate the impact of PMT charge smearing and lead to a relative 2.0–2.8% improvement on the energy resolution in the energy range of [1, 9] MeV.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13724-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13724-3","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

Photomultiplier tubes (PMTs) are widely used in particle experiments for photon detection. PMT waveform analysis is crucial for high-precision measurements of the position and energy of incident particles in liquid scintillator (LS) detectors. A key factor contributing to the energy resolution in large liquid scintillator detectors with PMTs is the charge smearing of PMTs. This paper presents a machine-learning-based photon counting method for PMT waveforms and its application to the energy reconstruction, using the JUNO experiment as an example. The results indicate that leveraging the photon counting information from the machine learning model can partially mitigate the impact of PMT charge smearing and lead to a relative 2.0–2.8% improvement on the energy resolution in the energy range of [1, 9] MeV.

基于机器学习的PMT波形光子计数及其在提高大型液体闪烁体探测器能量分辨率中的应用
光电倍增管(pmt)广泛应用于粒子实验中的光子探测。PMT波形分析对于液体闪烁体探测器中入射粒子的位置和能量的高精度测量至关重要。影响pmt大型液体闪烁体探测器能量分辨率的一个关键因素是pmt的电荷涂抹。以JUNO实验为例,提出了一种基于机器学习的PMT波形光子计数方法及其在能量重建中的应用。结果表明,利用机器学习模型中的光子计数信息可以部分减轻PMT电荷涂抹的影响,并在能量范围[1,9]MeV内相对提高2.0-2.8%的能量分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信