{"title":"Hardy inequalities and uncertainty principles in the presence of a black hole","authors":"Miltiadis Paschalis","doi":"10.1007/s00013-024-02082-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we establish Hardy and Heisenberg uncertainty-type inequalities for the exterior of a Schwarzschild black hole. The weights that appear in both inequalities are tailored to fit the geometry, and can both be compared to the related Riemannian distance from the event horizon to yield inequalities for that distance. Moreover, in both cases the classic Euclidean inequalities with a point singularity can be recovered in the limit where one stands “far enough” from the black hole, as expected from the asymptotic flatness of the metric.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"124 2","pages":"205 - 218"},"PeriodicalIF":0.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02082-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we establish Hardy and Heisenberg uncertainty-type inequalities for the exterior of a Schwarzschild black hole. The weights that appear in both inequalities are tailored to fit the geometry, and can both be compared to the related Riemannian distance from the event horizon to yield inequalities for that distance. Moreover, in both cases the classic Euclidean inequalities with a point singularity can be recovered in the limit where one stands “far enough” from the black hole, as expected from the asymptotic flatness of the metric.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.