A. Samarin, A. Savelev, A. Toropov, A. Nazarenko, A. Motyko, E. Kotenko, A. Dozorceva, A. Dzestelova, E. Mikhailova, V. Malykh
{"title":"Streptococci Recognition in Microscope Images Using Taxonomy-based Visual Features","authors":"A. Samarin, A. Savelev, A. Toropov, A. Nazarenko, A. Motyko, E. Kotenko, A. Dozorceva, A. Dzestelova, E. Mikhailova, V. Malykh","doi":"10.3103/S1060992X24700693","DOIUrl":null,"url":null,"abstract":"<p>This study explores the development of classifiers for microbial images, specifically focusing on streptococci captured via microscopy of live samples. Our approach uses AutoML-based techniques and automates the creation and analysis of feature spaces to produce optimal descriptors for classifying these microscopic images. This technique leverages interpretable taxonomic features based on the external geometric attributes of various microorganisms. We have released an annotated dataset we assembled to validate our solution, featuring microbial images from unfixed microscopic scenes. Additionally, we assessed the classification performance of our method against several classifiers, including those employing deep neural networks. Our approach outperformed all others tested, achieving the highest Precision (0.980), Recall (0.979), and F1-score (0.980).</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"33 3 supplement","pages":"S424 - S434"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X24700693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the development of classifiers for microbial images, specifically focusing on streptococci captured via microscopy of live samples. Our approach uses AutoML-based techniques and automates the creation and analysis of feature spaces to produce optimal descriptors for classifying these microscopic images. This technique leverages interpretable taxonomic features based on the external geometric attributes of various microorganisms. We have released an annotated dataset we assembled to validate our solution, featuring microbial images from unfixed microscopic scenes. Additionally, we assessed the classification performance of our method against several classifiers, including those employing deep neural networks. Our approach outperformed all others tested, achieving the highest Precision (0.980), Recall (0.979), and F1-score (0.980).
期刊介绍:
The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.