Combined Use of Dynamic Inversion and Reinforcement Learning for Motion Control of an Supersonic Transport Aircraft

IF 1 Q4 OPTICS
Gaurav Dhiman, Yu. V. Tiumentsev, R. A. Tskhai
{"title":"Combined Use of Dynamic Inversion and Reinforcement Learning for Motion Control of an Supersonic Transport Aircraft","authors":"Gaurav Dhiman,&nbsp;Yu. V. Tiumentsev,&nbsp;R. A. Tskhai","doi":"10.3103/S1060992X2470067X","DOIUrl":null,"url":null,"abstract":"<p>The task of aircraft motion control has to be solved under conditions of numerous heterogeneous uncertainties both in the aircraft motion model and in the environment in which the aircraft is flying. These uncertainties, in particular, are caused by the fact that in the flight of the aircraft can occur various kinds of abnormal situations caused by failures of equipment and systems of the aircraft, damage to the airframe and propulsion system of the aircraft. Some of these failures and damages have a direct impact on the dynamic characteristics of the aircraft as a control object. In this regard, the problem arises of such an adjustment of aircraft control algorithms that would provide the ability to adapt to the changed dynamics of the aircraft. It is extremely difficult, and in some cases impossible, to foresee in advance all possible damages, failures and their combinations. Hence, it is necessary to implement adaptive flight control algorithms that are able to adjust to the changing situation. One of the effective tools for solving such problems is reinforcement learning in the Approximate Dynamic Programming (ADP) variant, in combination with artificial neural networks. In the last decade, a family of methods known as Adaptive Critic Design (ACD) has been actively developed within the ADP approach to control the behavior of complex dynamic systems. In our paper we consider the application of one of the variants of the ACD approach, namely SNAC (Single Network Adaptive Critic) and its development through its joint use with the method of dynamic inversion. The effectiveness of this approach is demonstrated on the example of longitudinal motion control of a supersonic transport airplane.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"33 3 supplement","pages":"S399 - S413"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X2470067X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The task of aircraft motion control has to be solved under conditions of numerous heterogeneous uncertainties both in the aircraft motion model and in the environment in which the aircraft is flying. These uncertainties, in particular, are caused by the fact that in the flight of the aircraft can occur various kinds of abnormal situations caused by failures of equipment and systems of the aircraft, damage to the airframe and propulsion system of the aircraft. Some of these failures and damages have a direct impact on the dynamic characteristics of the aircraft as a control object. In this regard, the problem arises of such an adjustment of aircraft control algorithms that would provide the ability to adapt to the changed dynamics of the aircraft. It is extremely difficult, and in some cases impossible, to foresee in advance all possible damages, failures and their combinations. Hence, it is necessary to implement adaptive flight control algorithms that are able to adjust to the changing situation. One of the effective tools for solving such problems is reinforcement learning in the Approximate Dynamic Programming (ADP) variant, in combination with artificial neural networks. In the last decade, a family of methods known as Adaptive Critic Design (ACD) has been actively developed within the ADP approach to control the behavior of complex dynamic systems. In our paper we consider the application of one of the variants of the ACD approach, namely SNAC (Single Network Adaptive Critic) and its development through its joint use with the method of dynamic inversion. The effectiveness of this approach is demonstrated on the example of longitudinal motion control of a supersonic transport airplane.

Abstract Image

动态反演与强化学习在超音速运输机运动控制中的联合应用
飞行器运动控制的任务是在飞行器运动模型和飞行环境中存在大量异质不确定性的情况下解决的。这些不确定性主要是由于飞机在飞行过程中可能发生飞机设备和系统故障、飞机机体和推进系统损坏等引起的各种异常情况。其中一些故障和损坏对作为控制对象的飞机的动态特性有直接影响。在这方面,出现了这样一种飞机控制算法的调整问题,这种调整将提供适应飞机动态变化的能力。提前预见所有可能的损害、故障及其组合是极其困难的,在某些情况下是不可能的。因此,有必要实现能够适应不断变化的情况的自适应飞行控制算法。解决此类问题的有效工具之一是与人工神经网络相结合的近似动态规划(ADP)变体中的强化学习。在过去的十年中,一种被称为自适应批评设计(ACD)的方法在ADP方法中得到了积极的发展,以控制复杂动态系统的行为。在本文中,我们考虑了ACD方法的一种变体SNAC (Single Network Adaptive Critic)的应用及其与动态反演方法联合使用的发展。以某超声速运输机纵向运动控制为例,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
25
期刊介绍: The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信