Fake advertisements detection using automated multimodal learning: a case study for Vietnamese real estate data

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Duy Nguyen, Trung T. Nguyen, Cuong V. Nguyen
{"title":"Fake advertisements detection using automated multimodal learning: a case study for Vietnamese real estate data","authors":"Duy Nguyen,&nbsp;Trung T. Nguyen,&nbsp;Cuong V. Nguyen","doi":"10.1007/s10489-025-06238-2","DOIUrl":null,"url":null,"abstract":"<div><p>The popularity of e-commerce has given rise to fake advertisements that can expose users to financial and data risks while damaging the reputation of these e-commerce platforms. For these reasons, detecting and removing such fake advertisements are important for the success of e-commerce websites. In this paper, we propose FADAML, a novel end-to-end machine learning system to detect and filter out fake online advertisements. Our system combines techniques in multimodal machine learning and automated machine learning to achieve a high detection rate. As a case study, we apply FADAML to detect fake advertisements on popular Vietnamese real estate websites. Our experiments show that we can achieve 91.5% detection accuracy, which significantly outperforms three different state-of-the-art fake news detection systems.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10489-025-06238-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06238-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The popularity of e-commerce has given rise to fake advertisements that can expose users to financial and data risks while damaging the reputation of these e-commerce platforms. For these reasons, detecting and removing such fake advertisements are important for the success of e-commerce websites. In this paper, we propose FADAML, a novel end-to-end machine learning system to detect and filter out fake online advertisements. Our system combines techniques in multimodal machine learning and automated machine learning to achieve a high detection rate. As a case study, we apply FADAML to detect fake advertisements on popular Vietnamese real estate websites. Our experiments show that we can achieve 91.5% detection accuracy, which significantly outperforms three different state-of-the-art fake news detection systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信